scholarly journals Synthesis of physically crosslinked PAM/CNT flakes nanocomposite hydrogel films via a destructive approach

RSC Advances ◽  
2021 ◽  
Vol 11 (62) ◽  
pp. 39095-39107
Author(s):  
Alireza Yaghoubi ◽  
Ali Ramazani ◽  
Hossein Ghasemzadeh

Novel PAM/CNT flakes nanocomposite hydrogel films were synthesized by in situ degradation of the oxidized-MWCNTs into flakes using persulfate activation. The flakes crosslinked the PAM chains via hydrogen bonding to form a hydrogel network.

ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 15809-15820 ◽  
Author(s):  
Rabia Kouser ◽  
Arti Vashist ◽  
Md. Zafaryab ◽  
Moshahid A. Rizvi ◽  
Sharif Ahmad

2019 ◽  
Author(s):  
Jifu Duan ◽  
Stefan Mebs ◽  
Moritz Senger ◽  
Konstantin Laun ◽  
Florian Wittkamp ◽  
...  

The H2 conversion and CO inhibition reactivity of nine [FeFe]-hydrogenase constructs with semi-artificial cofactors was studied by in situ and time-resolved infrared spectroscopy, X-ray crystallography, and theoretical methods. Impaired hydrogen turnover and proton transfer as well as characteristic CO inhibition/ reactivation kinetics are assigned to varying degrees of hydrogen-bonding interactions at the active site. We show that the probability to adopt catalytic intermediates is modulated by intramolecular and protein-cofactor interactions that govern structural dynamics at the active site of [FeFe]-hydrogenases.<br>


2019 ◽  
Author(s):  
Jifu Duan ◽  
Stefan Mebs ◽  
Moritz Senger ◽  
Konstantin Laun ◽  
Florian Wittkamp ◽  
...  

The H2 conversion and CO inhibition reactivity of nine [FeFe]-hydrogenase constructs with semi-artificial cofactors was studied by in situ and time-resolved infrared spectroscopy, X-ray crystallography, and theoretical methods. Impaired hydrogen turnover and proton transfer as well as characteristic CO inhibition/ reactivation kinetics are assigned to varying degrees of hydrogen-bonding interactions at the active site. We show that the probability to adopt catalytic intermediates is modulated by intramolecular and protein-cofactor interactions that govern structural dynamics at the active site of [FeFe]-hydrogenases.<br>


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 259 ◽  
Author(s):  
Francesca Cuomo ◽  
Martina Cofelice ◽  
Francesco Lopez

The interest toward alginate and nanoemulsion-based hydrogels is driven by the wide potential of application. These systems have been noticed in several areas, ranging from pharmaceutical, medical, coating, and food industries. In this investigation, hydrogels prepared through in situ calcium ion release, starting from lemongrass essential oil nanodispersions stabilized in alginate aqueous suspensions in the presence of the nonionic surfactant Tween 80, were evaluated. The hydrogels prepared at different concentrations of oil, alginate, and calcium were characterized through rheological tests. Flow curves demonstrate that the hydrogels share shear thinning behavior. Oscillatory tests showed that the strength of the hydrogel network increases with the crosslinker increase, and decreases at low polymer concentrations. The hydrogels were thixotropic materials with a slow time of structural restoration after breakage. Finally, by analyzing the creep recovery data, the hydrogel responses were all fitted to the Burger model. Overall, it was demonstrated that the presence of essential oil in the proposed hydrogels does not affect the mechanical characteristics of the materials, which are mainly influenced by the concentration of polymer and calcium as a crosslinker.


2020 ◽  
Vol 28 (12) ◽  
pp. 1127-1133
Author(s):  
Jingyan Zhang ◽  
Shifeng Wang ◽  
Zeren Zhao ◽  
Dong Si ◽  
Haiou Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document