scholarly journals Simple in situ synthesis of SiC nanofibers on graphite felt as a scaffold for improving performance of paraffin-based composite phase change materials

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 878-887
Author(s):  
Xiao Li ◽  
Hao Wang ◽  
Xuening Yang ◽  
Xiaoguang Zhang ◽  
Bin Ma

The composite phase change material has excellent thermal properties, good photo-thermal conversion efficiency and flexible design in size, which produces a type of material for applications in solar and buildings energy storage.

RSC Advances ◽  
2016 ◽  
Vol 6 (19) ◽  
pp. 15821-15830 ◽  
Author(s):  
Bo Tan ◽  
Zhaohui Huang ◽  
Zhaoyu Yin ◽  
Xin Min ◽  
Yan'gai Liu ◽  
...  

A shape-stabilized composite phase change material comprising PEG and porous carbon was prepared by absorbing PEG into porous carbon.


2013 ◽  
Vol 320 ◽  
pp. 314-319
Author(s):  
Jun Mao ◽  
Shui Lin Zheng ◽  
Yu Zhong Zhang ◽  
Yan Ping Bai ◽  
Yue Liu

Organic phase change materials like paraffin as phase change material, modified diatomite as carrier, composite phase change material with proper phase change temperature and larger phase change enthalpy is prepared by melt blending. The structure and performance of composite phase material are characterized using SEM, FI-IR and synthesized thermal analyzer DSC. The results show that the phase change temperature of composite phase change material is 30, and phase change enthalpy is 89.54J/g. With every part preserved, phase change particles are distributed in the diatomite/melted paraffin matrix evenly. Stable composite phase change materials are prepared with diatomite as carrier and paraffin as PCM, which are bonded with Vander Waals forces in the form of physical adsorption.


2021 ◽  
Vol 245 ◽  
pp. 03070
Author(s):  
Jianping Zong ◽  
Defu Wang ◽  
Yanlin Jin ◽  
Xing Gao ◽  
Xinxin Wang

The composite phase change material was prepared via the impregnation method using diatomaceous as the carrier and stearic acid as the phase change material. The effects of diatomite content, temperature, immersion time and pressure on the mass ratio of stearic acid and diatomaceous earth in the composite phase change materials were discussed. The experimental results showed that the optimum conditions for preparing stearic acid/diatomite composite phase change material were immersion temperature of 80℃, socking time of 2 h, diatomite mass fraction of 23.04%, and vacuum degree of 0.03 MPa. Finally, the infrared spectroscopy analysis of stearic acid/diatomite composite phase change energy storage material showed that there is no chemical reaction between stearic acid and diatomite. And they are held together by intermolecular forces.


2018 ◽  
Vol 53 (21) ◽  
pp. 2967-2980 ◽  
Author(s):  
Ahmet Sarı ◽  
Alper Biçer ◽  
Gökhan Hekimoğlu

Fatty acids are commonly preferred as phase change materials for passive solar thermoregulation due to their several advantageous latent heat thermal energy storage (LHTES) properties. However, further storage container requirement of fatty acids against leakage problem during heating period and also low thermal conductivity significantly limit their application fields. To overcome these drawbacks of capric acid–stearic acid eutectic mixture as phase change material, it was first impregnated with expanded vermiculite clay by melting/blending method and then doped with carbon nanotubes. The effects of carbon nanotubes additive on the chemical/morphological structures and LHTES properties of the composite phase change material and thermal enhanced change phase change materials were investigated by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis analysis techniques. The differential scanning calorimetry results showed that the form-stable composite phase change materials and thermal enhanced composite phase change materials have melting temperatures in the range of 24.35–24.64℃ and latent heat capacities between 76.32 and 73.13 J/g. Thermal conductivity of the composite phase change materials was increased as 83.3, 125.0 and 258.3% by carbon nanotubes doping 1, 3 and 5 wt%. The heat charging and discharging times of the thermal enhanced -composite phase change materials were reduced appreciably due to the enhanced thermal conductivity without notably influencing their LHTES properties. Furthermore, the thermal cycling test and thermogravimetric analysis findings proved that all fabricated composites had admirable thermal durability, cycling LHTES performance and chemical stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 66134-66140 ◽  
Author(s):  
Kang Peng ◽  
Jinyi Zhang ◽  
Huaming Yang ◽  
Jing Ouyang

Form-stable composite phase change materials (PCMs) for use in wallboards were prepared by absorbing stearic acid (SA) and lauric acid (LA) eutectic mixtures into the pores of expanded perlite (EP) via vacuum impregnation.


Author(s):  
Tingting Wu ◽  
Yanxin Hu ◽  
Xianqing Liu ◽  
Changhong Wang ◽  
Zijin Zeng ◽  
...  

Background: The employment of Phase Change Materials (PCMs) provides a potential selection for heat dissipation and energy storage. The main reason that hinders the wide application is the low thermal conductivity of PCMs. Combining the proper metal fin and copper foam, the fin/composite phase change material (Fin-CPCM) structure with good performance could be obtained. However, the flow resistance of liquid paraffin among the porous structure has seldom been reported, which will significantly affect the thermal performance inside the metal foam. Furthermore, the presence of porous metal foam is primarily helpful for enhancing the heat transfer process from the bottom heat source. The heat transfer rate is slow due to the one-dimensional heat transfer from the bottom. It should be beneficial for improving the heat transfer performance by adding external fins. Therefore, in the present study, a modified structure by combining the metal fin and copper foam is proposed to further accelerate the melting process and improve the temperature uniformity of the composite. Objective: The purpose of this study is to research the differences in the heat transfer performance among pure paraffin, Composite Phase Change Materials (CPCM) and fin/Composite Phase Change Material (Fin-CPCM) under different heating conditions, and the flow resistance of melting paraffin in copper foam. Methods: To experimentally research the differences in the heat transfer performance among pure paraffin, CPCM and Fin-CPCM under different heating conditions, a visual experimental platform was set up, and the flow resistance of melting paraffin in copper foam was also analyzed. In order to probe into the limits of the heat transfer capability of composite phase change materials, the temperature distribution of PCMs under constant heat fluxes and constant temperature conditions was studied. In addition, the evolution of the temperature distributions was visualized by using the infrared thermal imager at specific points during the melting process. Results: The experimental results showed that the maximum temperature of Fin-CPCM decreased by 21°C under the heat flux of 1500W/m2 compared with pure paraffin. At constant temperature heating conditions, the melting time of Fin-CPCM at a temperature of 75°C is about 2600s, which is 65% less than that of pure paraffin. Due to the presence of the external fins, which brings the advantage of improving the heat transfer rate, the experimental result exhibited the most uniform temperature distribution. Conclusion: The addition of copper foam can accelerate the melting process. The addition of external fins brings the advantage of improving the heat transfer rate, and can make the temperature distribution more uniform.


Sign in / Sign up

Export Citation Format

Share Document