Size-controlled, hollow and hierarchically porous Co2Ni2 alloy nanocubes for efficient oxygen reduction in microbial fuel cells

Author(s):  
Wenyi Wang ◽  
Xueqin Wang ◽  
Yuanyuan Wang ◽  
Bolong Jiang ◽  
Hua Song

Uniform, hollow-structure and hierarchically porous materials often produce surprisingly outstanding electrocatalytic performance. Besides, fabrication of highly active and stable non-noble metal-based alloys remains a huge challenge. Herein, a facile synthetic...

2014 ◽  
Vol 70 (10) ◽  
pp. 1610-1616 ◽  
Author(s):  
Huanan Wu ◽  
Min Lu ◽  
Lin Guo ◽  
Leonard Guan Hong Bay ◽  
Zheng Zhang ◽  
...  

Polyelectrolyte–single wall carbon nanotube (SCNT) composites are prepared by a solution-based method and used as metal-free cathode catalysts for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). In this study, two types of polyelectrolytes, polydiallyldimethylammonium chloride (PDDA) and poly[bis(2-chloroethyl)ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] (PEPU) are applied to decorate the SCNTs and the resulting catalysts exhibit remarkable catalytic ability toward ORR in MFC applications. The enhanced catalytic ability could be attributed to the positively charged quaternary ammonium sites of polyelectrolytes, which increase the oxygen affinity of SCNTs and reduce activation energy in the oxygen reduction process. It is also found that PEPU–SCNT composite-based MFCs show efficient performance with maximum power density of 270.1 mW m−2, comparable to MFCs with the benchmark Pt/C catalyst (375.3 mW m−2), while PDDA–SCNT composite-based MFCs produce 188.9 mW m−2. These results indicate that PEPU–SCNT and PDDA–SCNT catalysts are promising candidates as metal-free cathode catalysts for ORR in MFCs and could facilitate MFC scaling up and commercialization.


2017 ◽  
Vol 164 (14) ◽  
pp. E519-E524 ◽  
Author(s):  
Bolong Jiang ◽  
Thorben Muddemann ◽  
Ulrich Kunz ◽  
Leandro Gomes Silva e Silva ◽  
Hinnerk Bormann ◽  
...  

2017 ◽  
Vol 135 ◽  
pp. 62-68 ◽  
Author(s):  
Mengxue Yan ◽  
Xiaoyong Tian ◽  
Gang Peng ◽  
Yi Cao ◽  
Dichen Li

Sign in / Sign up

Export Citation Format

Share Document