scholarly journals Thickness control of 2D nanosheets assembled from precise side-chain giant molecules

2021 ◽  
Vol 12 (14) ◽  
pp. 5216-5223
Author(s):  
Fengfeng Feng ◽  
Dong Guo ◽  
Yu Shao ◽  
Xiang Yan ◽  
Kan Yue ◽  
...  

Thickness of self-assembled 2D nanosheets is not necessarily proportional to the contour length (or molecular weight) of the building blocks.

2021 ◽  
Author(s):  
Lishan Li ◽  
jiangdong zhang ◽  
Min Liu ◽  
Xianheng Shi ◽  
Wei Zhang ◽  
...  

A series of self-assembled 1D nanostructures including the straight and helix nanofibers, nanoribbons, and nanobelts were fabricated from uniform amphiphilic azobenzene oligomers with tunable molecular weight and side chain functionality,...


2021 ◽  
Vol 7 (4) ◽  
pp. eabd0492
Author(s):  
Yixiang Jiang ◽  
Wan Zhang ◽  
Fadeng Yang ◽  
Chuan Wan ◽  
Xiang Cai ◽  
...  

Peptide self-assembly inspired by natural superhelical coiled coils has been actively pursued but remains challenging due to limited helicity of short peptides. Side chain stapling can strengthen short helices but is unexplored in design of self-assembled helical nanofibers as it is unknown how staples could be adapted to coiled coil architecture. Here, we demonstrate the feasibility of this design for pentapeptides using a computational method capable of predicting helicity and fiber-forming tendency of stapled peptides containing noncoded amino acids. Experiments showed that the best candidates, which carried an aromatically substituted staple and phenylalanine analogs, displayed exceptional helicity and assembled into nanofibers via specific head-to-tail hydrogen bonding and packing between staple and noncoded side chains. The fibers exhibited sheet-of-helix structures resembling the recently found collapsed coiled coils whose formation was sensitive to side chain flexibility. This study expands the chemical space of coiled coil assemblies and provides guidance for their design.


Nanoscale ◽  
2021 ◽  
Author(s):  
Michael Penth ◽  
Kordula Schellnhuber ◽  
Roland Bennewitz ◽  
Johanna Blass

Massive parallel force spectroscopy reveals a surprisingly high flexibility for DNA constructs used in DNA origami. The high flexibility is attributed to the structural dynamics of DNA self-assemblies.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Jia Guo ◽  
Hang Li ◽  
Shushu Chu ◽  
Qi Zhang ◽  
Ziqiong Lin ◽  
...  

Porous MoO3/V0.13Mo0.87O2.935 heterostructures self-assembled with 2D nanosheets have been primarily prepared by a facile method for effectively detecting ethanol at room temperature. V0.13Mo0.87O2.935 phase contributes to the modified microspheres and...


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Sign in / Sign up

Export Citation Format

Share Document