scholarly journals Transition-Metal-Free Synthesis of Conjugated Microporous Polymers via Amine-Catalyzed Suzuki-Miyaura Coupling Reaction

2021 ◽  
Author(s):  
Qingmin Liu ◽  
Shangbin Jin ◽  
Bien Tan

The synthesis of conjugated microporous polymers (CMPs) has been heavily relied on transition-metal-catalysis carbon-carbon coupling reactions, which has shortages in the scarcity and high cost of the noble metal catalysts....

2021 ◽  
Author(s):  
Qingmin Liu ◽  
Shangbin Jin ◽  
Bien Tan

Retraction of ‘Transition-metal-free synthesis of conjugated microporous polymers via amine-catalyzed Suzuki–Miyaura coupling reaction’ by Qingmin Liu et al., Chem. Sci., 2021, DOI: 10.1039/d1sc03970a.


Synthesis ◽  
2020 ◽  
Author(s):  
Yan-Wei Zhao ◽  
Shun-Yi Wang ◽  
Xin-Yu Liu ◽  
Tian Jiang ◽  
Weidong Rao

AbstractA synthesis of benzothiazole derivatives through the reaction of 2-halo-N-allylanilines with K2S in DMF is developed. The trisulfur radical anion S3·–, which is generated in situ from K2S in DMF, initiates the reaction without transition-metal catalysis or other additives. In addition, two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 355 ◽  
Author(s):  
Yi Wang ◽  
Anan Liu ◽  
Dongge Ma ◽  
Shuhong Li ◽  
Chichong Lu ◽  
...  

Fulfilling the direct inert C–H bond functionalization of raw materials that are earth-abundant and commercially available for the synthesis of diverse targeted organic compounds is very desirable and its implementation would mean a great reduction of the synthetic steps required for substrate prefunctionalization such as halogenation, borylation, and metalation. Successful C–H bond functionalization mainly resorts to homogeneous transition-metal catalysis, albeit sometimes suffering from poor catalyst reusability, nontrivial separation, and severe biotoxicity. TiO2 photocatalysis displays multifaceted advantages, such as strong oxidizing ability, high chemical stability and photostability, excellent reusability, and low biotoxicity. The chemical reactions started and delivered by TiO2 photocatalysts are well known to be widely used in photocatalytic water-splitting, organic pollutant degradation, and dye-sensitized solar cells. Recently, TiO2 photocatalysis has been demonstrated to possess the unanticipated ability to trigger the transformation of inert C–H bonds for C–C, C–N, C–O, and C–X bond formation under ultraviolet light, sunlight, and even visible-light irradiation at room temperature. A few important organic products, traditionally synthesized in harsh reaction conditions and with specially functionalized group substrates, are continuously reported to be realized by TiO2 photocatalysis with simple starting materials under very mild conditions. This prominent advantage—the capability of utilizing cheap and readily available compounds for highly selective synthesis without prefunctionalized reactants such as organic halides, boronates, silanes, etc.—is attributed to the overwhelmingly powerful photo-induced hole reactivity of TiO2 photocatalysis, which does not require an elevated reaction temperature as in conventional transition-metal catalysis. Such a reaction mechanism, under typically mild conditions, is apparently different from traditional transition-metal catalysis and beyond our insights into the driving forces that transform the C–H bond for C–C bond coupling reactions. This review gives a summary of the recent progress of TiO2 photocatalytic C–H bond activation for C–C coupling reactions and discusses some model examples, especially under visible-light irradiation.


Synlett ◽  
2020 ◽  
Vol 31 (19) ◽  
pp. 1857-1861
Author(s):  
Hua Zhang ◽  
Li Wang

In recent decades, C–H borylation has undergone rapid development and has become one of the most important and efficient methods for the synthesis of organoboron compounds. Although transition-metal catalysis dominates C–H borylation, the metal-free approach has emerged as a promising alternative strategy. This article briefly summarizes the history of metal-free aromatic C–H borylation, including early reports on electrophilic C–H borylation and recent progress in metal-free catalytic intermolecular C–H borylation; it also highlights our recent work on BF3·Et2O-catalyzed C2–H borylation of hetarenes. Despite these recent advances, comprehensive mechanistic studies on various metal-free catalytic aromatic C–H borylations and novel processes with a wider substrate scope are eagerly expected in the near future.


2021 ◽  
Author(s):  
Qingmin Liu ◽  
Xuepeng Wang ◽  
Bien Tan ◽  
Shangbin Jin

Conjugated microporous polymers (CMPs) are attractive porous polymers which have found enormous science and technical in-terests in gas adsorption and heterogeneous catalysis. However, most of these conjugated porous polymers are...


2021 ◽  
Author(s):  
Wen-Jing Xiao ◽  
Fu-Dong Lu ◽  
Gui-Feng He ◽  
Liang-Qiu Lu

The combination of photoredox and transition metal catalysis, which is termed metallaphotoredox catalysis, is a powerful platform for building complex molecules under mild conditions. In particular, metallaphotoredox-catalyzed multicomponent coupling reactions,...


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44299-44305 ◽  
Author(s):  
Yi-Wei Liu ◽  
Satpal Singh Badsara ◽  
Yi-Chen Liu ◽  
Chin-Fa Lee

K2S2O8/I2 promoted C–S coupling reaction of β-diketone with disulfide has been described. The resulting α-thio-β-diketones compounds were obtained in good to excellent yields.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2327 ◽  
Author(s):  
Lucia Chiummiento ◽  
Rosarita D’Orsi ◽  
Maria Funicello ◽  
Paolo Lupattelli

This review describes the progress of the last decade on the synthesis of substituted benzofurans, which are useful scaffolds for the synthesis of numerous natural products and pharmaceuticals. In particular, new intramolecular and intermolecular C–C and/or C–O bond-forming processes, with transition-metal catalysis or metal-free are summarized. (1) Introduction. (2) Ring generation via intramolecular cyclization. (2.1) C7a–O bond formation: (route a). (2.2) O–C2 bond formation: (route b). (2.3) C2–C3 bond formation: (route c). (2.4) C3–C3a bond formation: (route d). (3) Ring generation via intermolecular cyclization. (3.1) C7a-O and C3–C3a bond formation (route a + d). (3.2) O–C2 and C2–C3 bond formation: (route b + c). (3.3) O–C2 and C3–C3a bond formation: (route b + d). (4) Benzannulation. (5) Conclusion.


Sign in / Sign up

Export Citation Format

Share Document