scholarly journals Functionalised Nanopores: Chemical and Biological Modifications

2022 ◽  
Author(s):  
Scott Lee Cockroft ◽  
Dominic F. Cairns-Gibson

Nanopore technology has established itself as a powerful tool for single-molecule studies. By analysing changes in the ion current flowing through a single transmembrane channel, a wealth of molecular information...

2021 ◽  
Vol 22 (5) ◽  
pp. 2398
Author(s):  
Wooyoung Kang ◽  
Seungha Hwang ◽  
Jin Young Kang ◽  
Changwon Kang ◽  
Sungchul Hohng

Two different molecular mechanisms, sliding and hopping, are employed by DNA-binding proteins for their one-dimensional facilitated diffusion on nonspecific DNA regions until reaching their specific target sequences. While it has been controversial whether RNA polymerases (RNAPs) use one-dimensional diffusion in targeting their promoters for transcription initiation, two recent single-molecule studies discovered that post-terminational RNAPs use one-dimensional diffusion for their reinitiation on the same DNA molecules. Escherichia coli RNAP, after synthesizing and releasing product RNA at intrinsic termination, mostly remains bound on DNA and diffuses in both forward and backward directions for recycling, which facilitates reinitiation on nearby promoters. However, it has remained unsolved which mechanism of one-dimensional diffusion is employed by recycling RNAP between termination and reinitiation. Single-molecule fluorescence measurements in this study reveal that post-terminational RNAPs undergo hopping diffusion during recycling on DNA, as their one-dimensional diffusion coefficients increase with rising salt concentrations. We additionally find that reinitiation can occur on promoters positioned in sense and antisense orientations with comparable efficiencies, so reinitiation efficiency depends primarily on distance rather than direction of recycling diffusion. This additional finding confirms that orientation change or flipping of RNAP with respect to DNA efficiently occurs as expected from hopping diffusion.


2010 ◽  
Vol 63 (4) ◽  
pp. 624
Author(s):  
Michael J. Serpe ◽  
Jason R. Whitehead ◽  
Stephen L. Craig

Single molecule atomic force microscopy (AFM) studies of oligonucleotide-based supramolecular polymers on surfaces are used to examine the molecular weight distribution of the polymers formed between a functionalized surface and an AFM tip as a function of monomer concentration. For the concentrations examined here, excellent agreement with a multi-stage open association model of polymerization is obtained, without the need to invoke additional contributions from secondary steric interactions at the surface.


2011 ◽  
Vol 100 (3) ◽  
pp. 464a
Author(s):  
Promod R. Pratap ◽  
Gregor Heiss ◽  
Martin Sikor ◽  
Don C. Lamb ◽  
Max Burnett

2014 ◽  
Vol 106 (2) ◽  
pp. 394a
Author(s):  
Richard Janissen ◽  
Bojk A. Berghuis ◽  
Orkide Ordu ◽  
Max M. Wink ◽  
David Dulin ◽  
...  

2021 ◽  
Vol 7 (21) ◽  
pp. eabg0942
Author(s):  
Jae Ho Lee ◽  
Ahmad Jomaa ◽  
SangYoon Chung ◽  
Yu-Hsien Hwang Fu ◽  
Ruilin Qian ◽  
...  

The conserved signal recognition particle (SRP) cotranslationally delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum (ER). The molecular mechanism by which eukaryotic SRP transitions from cargo recognition in the cytosol to protein translocation at the ER is not understood. Here, structural, biochemical, and single-molecule studies show that this transition requires multiple sequential conformational rearrangements in the targeting complex initiated by guanosine triphosphatase (GTPase)–driven compaction of the SRP receptor (SR). Disruption of these rearrangements, particularly in mutant SRP54G226E linked to severe congenital neutropenia, uncouples the SRP/SR GTPase cycle from protein translocation. Structures of targeting intermediates reveal the molecular basis of early SRP-SR recognition and emphasize the role of eukaryote-specific elements in regulating targeting. Our results provide a molecular model for the structural and functional transitions of SRP throughout the targeting cycle and show that these transitions provide important points for biological regulation that can be perturbed in genetic diseases.


RNA Biology ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 1108-1118 ◽  
Author(s):  
Songhee H. Kim ◽  
Melissa Vieira ◽  
Jae Youn Shim ◽  
Hongyoung Choi ◽  
Hye Yoon Park

Sign in / Sign up

Export Citation Format

Share Document