helicase loading
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shalini Gupta ◽  
Larry J Friedman ◽  
Jeff Gelles ◽  
Stephen P Bell

Replication origins are licensed by loading two Mcm2‑7 helicases around DNA in a head-to-head conformation poised to initiate bidirectional replication. This process requires ORC, Cdc6, and Cdt1. Although different Cdc6 and Cdt1 molecules load each helicase, whether two ORC proteins are required is unclear. Using colocalization single-molecule spectroscopy combined with FRET, we investigated interactions between ORC and Mcm2‑7 during helicase loading. In the large majority of events, we observed a single ORC molecule recruiting both Mcm2‑7/Cdt1 complexes via similar interactions that end upon Cdt1 release. Between first and second helicase recruitment, a rapid change in interactions between ORC and the first Mcm2-7 occurs. Within seconds, ORC breaks the interactions mediating first Mcm2-7 recruitment, releases from its initial DNA-binding site, and forms a new interaction with the opposite face of the first Mcm2-7. This rearrangement requires release of the first Cdt1 and tethers ORC as it flips over the first Mcm2-7 to form an inverted Mcm2‑7-ORC-DNA complex required for second-helicase recruitment. To ensure correct licensing, this complex is maintained until head-to-head interactions between the two helicases are formed. Our findings reconcile previous observations and reveal a highly-coordinated series of events through which a single ORC molecule can load two oppositely-oriented helicases.


2021 ◽  
Author(s):  
Shalini Gupta ◽  
Larry J. Friedman ◽  
Jeff Gelles ◽  
Stephen P. Bell

AbstractReplication origins are licensed by loading two Mcm2-7 helicases around DNA in a head-to-head conformation poised to initiate bidirectional replication. This process requires ORC, Cdc6, and Cdt1. Although different Cdc6 and Cdt1 molecules load each helicase, whether two ORC proteins are required is unclear. Using colocalization single-molecule spectroscopy combined with FRET, we investigated interactions between ORC and Mcm2-7 during helicase loading. We demonstrate that a single ORC molecule can recruit both Mcm2-7/Cdt1 complexes via similar interactions that end upon Cdt1 release. Between the first and second helicase recruitment, we observe a rapid change in interactions between ORC and the first Mcm2-7. In quick succession ORC breaks the interactions mediating first Mcm2-7 recruitment, releases from its initial DNA-binding site, and forms a new interaction with the opposite face of the first Mcm2-7. This rearrangement requires release of the first Cdt1 and tethers ORC as it flips over the first Mcm2-7 to form an inverted Mcm2-7-ORC-DNA complex required for second-helicase recruitment. To ensure correct licensing, this complex is maintained until head-to-head interactions between the two helicases are formed. Our findings reconcile previous observations and reveal a highly-coordinated series of events through which a single ORC molecule can load two oppositely-oriented helicases.


2021 ◽  
Author(s):  
Charles Winterhalter ◽  
Daniel Stevens ◽  
Stepan Fenyk ◽  
Simone Pelliciari ◽  
Elie Marchand ◽  
...  

The mechanisms responsible for helicase loading during the initiation of chromosome replication in bacteria are unclear. Here we report both a positive and a negative mechanism for directing helicase recruitment in the model organism Bacillus subtilis. Systematic mutagenesis of the essential replication initiation gene dnaD and characterization of DnaD variants revealed protein interfaces required for interacting with the master initiator DnaA and with a specific single-stranded DNA (ssDNA) sequence located in the chromosome origin (DnaD Recognition Element, DRE). We propose that the location of the DRE within the replication origin orchestrates recruitment of helicase to achieve bidirectional DNA replication. We also report that the developmentally expressed repressor of DNA replication initiation, SirA, acts by blocking the interaction of DnaD with DnaA, thereby inhibiting helicase recruitment to the origin. These findings significantly advance our mechanistic understanding of helicase recruitment and regulation during bacterial DNA replication initiation. Because DnaD is essential for the viability of clinically relevant Gram-positive pathogens, DnaD is an attractive target for drug development.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Neha Puri ◽  
Amy J Fernandez ◽  
Valerie L O'Shea Murray ◽  
Sarah McMillan ◽  
James L Keck ◽  
...  

In many bacteria and in eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+ ATPases. How loading factors use ATP to control helicase deposition is poorly understood. Here, we dissect how specific ATPase elements of E. coli DnaC, an archetypal loader for the bacterial DnaB helicase, play distinct roles in helicase loading and the activation of DNA unwinding. We identify a new element, the arginine-coupler, which regulates the switch-like behavior of DnaC to prevent futile ATPase cycling and maintains loader responsiveness to replication restart systems. Our data help explain how the ATPase cycle of a AAA+-family helicase loader is channeled into productive action on its target; comparative studies indicate elements analogous to the Arg-coupler are present in related, switch-like AAA+ proteins that control replicative helicase loading in eukaryotes, as well as polymerase clamp loading and certain classes of DNA transposases.


Genetics ◽  
2020 ◽  
Vol 217 (1) ◽  
pp. 1-11
Author(s):  
Seiji Tanaka

Abstract DNA replication in eukaryotes is a multi-step process that consists of three main reactions: helicase loading (licensing), helicase activation (firing), and nascent DNA synthesis (elongation). Although the contributions of some chromatin regulatory factors in the licensing and elongation reaction have been determined, their functions in the firing reaction remain elusive. In the budding yeast Saccharomyces cerevisiae, Sld3, Sld7, and Cdc45 (3–7–45) are rate-limiting in the firing reaction and simultaneous overexpression of 3–7–45 causes untimely activation of late and dormant replication origins. Here, we found that 3–7–45 overexpression not only activated dormant origins in the silenced locus, HMLα, but also exerted an anti-silencing effect at this locus. For these, interaction between Sld3 and Esa1, a conserved histone acetyltransferase, was responsible. Moreover, the Sld3–Esa1 interaction was required for the untimely activation of late origins. These results reveal the Sld3–Esa1 interaction as a novel level of regulation in the firing reaction.


2020 ◽  
Author(s):  
Neha Puri ◽  
Amy J. Fernandez ◽  
Valerie L. O’Shea Murray ◽  
Sarah McMillan ◽  
James L. Keck ◽  
...  

ABSTRACTIn many bacteria and in eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+ ATPases. How loading factors use ATP to control helicase deposition is poorly understood. Here, we dissect how specific ATPase elements of E. coli DnaC, an archetypal loader for the bacterial DnaB helicase, play distinct roles in helicase loading and the activation of DNA unwinding. We identify a new element, the arginine-coupler, which regulates the switch-like behavior of DnaC to prevent futile ATPase cycling and maintains loader responsiveness to replication restart systems. Our data help explain how the ATPase cycle of a AAA+-family helicase loader is channeled into productive action on its target; comparative studies indicate elements analogous to the Arg-coupler are present in related, switch-like AAA+ proteins that control replicative helicase loading in eukaryotes, as well as polymerase clamp loading and certain classes of DNA transposases.


2020 ◽  
Author(s):  
Seiji Tanaka

SUMMARYDNA replication in eukaryotes is a multi-step process that consists of three main reactions: helicase loading (licensing), helicase activation (firing), and nascent DNA synthesis (elongation). Although the contributions of some chromatin regulatory factors in the licensing and elongation reaction have been determined, their functions in the firing reaction remain elusive. In the budding yeast Saccharomyces cerevisiae, Sld3, Sld7, and Cdc45 (3-7-45) are rate-limiting in the firing reaction and simultaneous overexpression of 3-7-45 causes untimely activation of late and dormant replication origins. Here we found that 3-7-45 overexpression not only activated dormant origins in the silenced locus, HMLα, but also exerted an anti-silencing effect at this locus. For these, interaction between Sld3 and Esa1, a conserved histone acetyltransferase, was responsible. Moreover, the Sld3–Esa1 interaction was required for untimely activation of late origins. These results reveal the Sld3–Esa1 interaction as a novel level of regulation in the firing reaction.


2020 ◽  
Vol 117 (30) ◽  
pp. 17747-17756 ◽  
Author(s):  
Zuanning Yuan ◽  
Sarah Schneider ◽  
Thomas Dodd ◽  
Alberto Riera ◽  
Lin Bai ◽  
...  

DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC–Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC–Cdc6–Cdt1–Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC–Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In “semi-attached OCCM,” the Mcm3 and Mcm7 WHDs latch onto ORC–Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In “pre-insertion OCCM,” the main body of Mcm2-7 docks onto ORC–Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2–Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.


2018 ◽  
Author(s):  
Lindsay A. Matthews ◽  
Lyle A. Simmons

AbstractDNA replication is a fundamental biological process that is tightly regulated in all living cells. In bacteria, the master regulator DnaA controls when and where replication begins by building a step-wise complex that loads the replicative helicase onto chromosomal DNA. In many bacteria, DnaA requires the adaptor proteins DnaD and DnaB to aid DnaA during helicase loading. How DnaA, its adaptors, and the helicase form a complex at the origin is largely unknown. In this study, we addressed this long-standing question by disassembling the initiation proteins into their individual domains and testing all possible pair-wise combinations in a bacterial two-hybrid assay. Here we report a full description of the cryptic interaction sites used by the helicase loading machinery from Bacillus subtilis. In addition, we investigated how complex formation of the helicase loading machinery is regulated by the checkpoint protein SirA, which is a potent replication inhibitor in sporulating cells. We found that SirA and the DnaD adaptor bind overlapping sites on DnaA, and therefore SirA acts as a competitive inhibitor to block initiation. The interaction between DnaA and DnaD was also mapped to the same DnaA surface in the human pathogen Staphylococcus aureus, demonstrating the broad conservation of this interface. Therefore, our approach has unveiled key protein interactions essential for initiation and is widely applicable for mapping interactions in other signaling pathways that are governed by cryptic binding surfaces.Author SummaryIn order to proliferate, bacteria must first build a step-wise protein complex on their chromosomes that determines when and where DNA replication begins. This protein complex is assembled through dynamic interactions that have been difficult to study and remain largely uncharacterized. Here we show that by deconstructing the proteins into their constituent domains, the interactions used to build the initiation complex can be readily detected and mapped to single amino acid resolution. Using this approach, we demonstrate that DNA replication is controlled through conformational changes that dictate the availability of interaction surfaces. In addition, negative regulators can also block DNA replication by influencing complex formation so that cells survive inhospitable conditions. Initiation proteins from the model organism B. subtilis and the human pathogen S. aureus were both used to underscore the general applicability of the results to different bacterial systems. Furthermore, our general strategy for mapping dynamic protein interactions is suitable for many different signaling pathways that are controlled through cryptic interaction surfaces.


Sign in / Sign up

Export Citation Format

Share Document