origin licensing
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 33)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Caitlin Connolly ◽  
Saori Takahashi ◽  
Hisashi Miura ◽  
Ichiro Hiratani ◽  
Nick Gilbert ◽  
...  

The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold attachment factor A (SAF-A), also known as Heteronuclear Ribonucleoprotein Protein U (HNRNPU), contributes to the formation of open chromatin structure. Here we demonstrate that SAF-A promotes the normal progression of DNA replication, and enables resumption of replication after inhibition. We report that cells depleted for SAF-A show reduced origin licensing in G1 phase, and consequently reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted for SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated -H2AX formation and tend to enter quiescence. Overall we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.


2021 ◽  
Author(s):  
Peter J Gillespie ◽  
Jolanta Kisielewska ◽  
Mohammed Al Mamun ◽  
Guennadi Khoudoli ◽  
Kevin Donal Creavin ◽  
...  

Cells face several challenges to completing genome duplication. One challenge is the irreversible stalling of converging replication forks (double fork stalls). Cell types that cannot delay mitotic entry must also ensure that no replication origins are too far apart (the random gap problem). We show how these challenges can be met in early Xenopus embryos by the very abundant licensing of replication origins: one MCM2-7 double hexamer every ~250 bp. Licensing does not change nucleosome spacing, consistent with MCM2-7 being assembled onto inter-nucleosomal linker DNA. We show that later embryonic development can occur successfully with a per-cell cycle failure rate of <0.2% in early embryos. The high density of licensed origins in the early embryo reduces cell cycle failures from random gaps and from double fork stalls to levels compatible with subsequent development, suggesting that Xenopus early embryonic cells can ensure complete genome duplication without requiring unconventional replication mechanisms.


2021 ◽  
Vol 134 (19) ◽  
Author(s):  
Alain Devault ◽  
Simonetta Piatti

ABSTRACT At mitotic exit the cell cycle engine is reset to allow crucial processes, such as cytokinesis and replication origin licensing, to take place before a new cell cycle begins. In budding yeast, the cell cycle clock is reset by a Hippo-like kinase cascade called the mitotic exit network (MEN), whose activation is triggered at spindle pole bodies (SPBs) by the Tem1 GTPase. Yet, MEN activity must be extinguished once MEN-dependent processes have been accomplished. One factor contributing to switching off the MEN is the Amn1 protein, which binds Tem1 and inhibits it through an unknown mechanism. Here, we show that Amn1 downregulates Tem1 through a dual mode of action. On one side, it evicts Tem1 from SPBs and escorts it into the nucleus. On the other, it promotes Tem1 degradation as part of a Skp, Cullin and F-box-containing (SCF) ubiquitin ligase. Tem1 inhibition by Amn1 takes place after cytokinesis in the bud-derived daughter cell, consistent with its asymmetric appearance in the daughter cell versus the mother cell. This dual mechanism of Tem1 inhibition by Amn1 may contribute to the rapid extinguishing of MEN activity once it has fulfilled its functions.


Author(s):  
Liu Mei ◽  
Jeanette Gowen Cook

The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.


2021 ◽  
Author(s):  
Jasmin Philip ◽  
Mihkel Ord ◽  
Andriele Silva ◽  
Shaneen Singh ◽  
John F.X. Diffley ◽  
...  

Cdc6, a subunit of the pre-replicative complex, contains multiple regulatory Cdk1 consensus sites, SP or TP motifs. In S. cerevisiae, Cdk1 phosphorylates Cdc6-T7 to recruit Cks1, the Cdk1 phospho-adaptor in S-phase, for subsequent multisite phosphorylation and protein degradation. Cdc6 accumulates in mitosis and is tightly bound by Clb2 through N-terminal phosphorylation in order to prevent premature origin licensing and degradation. It has been extensively studied how Cdc6 phosphorylation is regulated by the Cyclin-Cdk1 complex. However, a detailed mechanism on how Cdc6 phosphorylation is reversed by phosphatases has not been elucidated. Here, we show that PP2ACdc55 dephosphorylates Cdc6 N-terminal sites to release Clb2. Cdc14 dephosphorylates the C-terminal phospho-degron, leading to Cdc6 stabilization in mitosis. In addition, the Cdk1 inhibitor, Sic1, releases Clb2-Cdk1-Cks1 from Cdc6 to load Mcm2-7 on the chromatin upon mitotic exit. Thus, pre-RC assembly and origin licensing is promoted by the attenuation of distinct CDK-dependent Cdc6 inhibitory mechanisms.


2021 ◽  
Author(s):  
Juanita C Limas ◽  
Aimee N. Littlejohn ◽  
Amy M. House ◽  
Katarzyna M Kedziora ◽  
Dalia Fleifel ◽  
...  

Cyclin E/CDK2 drives cell cycle progression from G1 to S phase. Cyclin E overproduction is toxic to mammalian cells, although the gene encoding cyclin E (CCNE1) is overexpressed in some cancers. It is not yet understood how cancer cells tolerate high levels of cyclin E. To address this question, we extensively characterized non-transformed epithelial cells subjected to chronic cyclin E overproduction. Cells overproducing human cyclin E briefly experienced truncated G1 phases, then consistently endured a transient period of DNA replication origin underlicensing, replication stress, and severely impaired proliferation. Individual cells displayed substantial intercellular heterogeneity in both cell cycle dynamics and CDK activity. Each of these phenotypes improved rapidly despite maintaining high cyclin E-associated activity. Transcriptome analysis revealed that adapted cells downregulated a cohort of G1-regulated genes. These cells also shared at least one unique change also found in breast tumors that overproduce cyclin E, expression of the cancer/testis antigen HORMAD1. Withdrawing cyclin E induction partially reversed the intermediate licensing phenotype of adapted cells indicating that adaptation is at least partly independent of genetic alterations. This study provides evidence that mammalian cyclin E/CDK inhibits origin licensing by an indirect mechanism through premature S phase onset. It serves as an example of specific oncogene adaptation that can identify key molecular changes during tumorigenesis.


2021 ◽  
Vol 118 (28) ◽  
pp. e2026421118
Author(s):  
Tenghan Zhuang ◽  
Boyan Zhang ◽  
Yihong Song ◽  
Fan Huang ◽  
Wangfei Chi ◽  
...  

Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.


2021 ◽  
Author(s):  
Nalin Ratnayeke ◽  
Mingyu Chung ◽  
Tobias Meyer

A fundamental concept in eukaryotic DNA replication is the temporal separation of G1 origin licensing from S phase origin firing. Re-replication and genome instability ensue if licensing occurs after DNA synthesis has started. In humans and other vertebrates, the E3 ubiquitin ligase CRL4Cdt2 starts to degrade the licensing factor Cdt1 after origins fire, raising the question of how cells prevent re-replication in early S phase. Here, using quantitative microscopy, we show that Cdt1 inhibits DNA synthesis during an overlap period when cells fire origins while Cdt1 is still present. Cdt1 inhibits DNA synthesis by suppressing CMG helicase progression at replication forks through the MCM-binding domain of Cdt1, and DNA synthesis commences once Cdt1 is degraded. Thus, instead of separating licensing from firing to prevent re-replication in early S phase, cells separate licensing from DNA synthesis through Cdt1-mediated inhibition of CMG helicase after firing.


2021 ◽  
Author(s):  
Liu Mei ◽  
Katarzyna M. Kedziora ◽  
Eun-ah Song ◽  
Jeremy E Purvis ◽  
Jeanette Gowen Cook

MCM complexes are loaded onto chromosomes to license DNA replication origins in G1 phase of the cell cycle, but it is not yet known how mammalian MCM complexes are adequately distributed to both euchromatin and heterochromatin. To address this question, we combined time-lapse live-cell imaging with fixed cell immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in heterochromatin and euchromatin at different times within G1. We report here that MCM loading in euchromatin is faster than in heterochromatin in very early G1, but surprisingly, heterochromatin loading accelerates faster than euchromatin in middle and late G1. These different loading dynamics require ORCA-dependent differences in ORC distribution during G1. A consequence of heterochromatin origin licensing dynamics is that cells experiencing a truncated G1 phase from premature Cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.


2021 ◽  
Author(s):  
Caitlin Connolly ◽  
Saori Takahashi ◽  
Hisashi Miura ◽  
Ichiro Hiratani ◽  
Nick Gilbert ◽  
...  

The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold attachment factor A (SAF-A), also known as Heteronuclear Ribonucleoprotein Protein U (HNRNPU), contributes to the formation of open chromatin structure. Here we demonstrate that SAF-A promotes the normal progression of DNA replication, and enables resumption of replication after inhibition. We report that cells depleted for SAF-A show reduced origin licensing in G1 phase, and consequently reduced origin activation frequency in S phase. Replication forks progress slowly in cells depleted for SAF-A, also contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed that the boundaries between early- and late- replicating domains are blurred in cells depleted for SAF-A. Associated with these defects, SAF-A-depleted cells show elevated gH2A phosphorylation and tend to enter quiescence. Overall we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document