scholarly journals Fluorescent supramolecular polymers of barbiturate dyes with thiophene-cored twisted π-systems

2022 ◽  
Author(s):  
Maika Kawaura ◽  
Takumi Aizawa ◽  
Sho Takahashi ◽  
Hiroshi Miyasaka ◽  
Hikaru Sotome ◽  
...  

Because supramolecular polymerization of emissive p-conjugated molecules depends strongly on p–pstacking interaction, the formation of well-defined one-dimensional nanostructures often results in decrease or only small increase of emission efficiency. This is also true...

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2832
Author(s):  
Mingliang Gui ◽  
Yifei Han ◽  
Hua Zhong ◽  
Rui Liao ◽  
Feng Wang

Cooperative supramolecular polymerization of π-conjugated compounds into one-dimensional nanostructures has received tremendous attentions in recent years. It is commonly achieved by incorporating amide linkages into the monomeric structures, which provide hydrogen bonds for intermolecular non-covalent complexation. Herein, the effect of amide linkages is elaborately studied, by comparing supramolecular polymerization behaviors of two structurally similar monomers with the same platinum(II) acetylide cores. As compared to the N-phenyl benzamide linkages, N-[(1S)-1-phenylethyl] benzamide linkages give rise to effective chirality transfer behaviors due to the closer distances between the chiral units and the platinum(II) acetylide core. They also provide stronger intermolecular hydrogen bonding strength, which consequently brings higher thermo-stability and enhanced gelation capability for the resulting supramolecular polymers. Supramolecular polymerization is further strengthened by varying the monomers from monotopic to ditopic structures. Hence, with the judicious modulation of structural parameters, the current study opens up new avenues for the rational design of supramolecular polymeric systems.


2021 ◽  
Vol 17 ◽  
pp. 97-104
Author(s):  
David Straßburger ◽  
Svenja Herziger ◽  
Katharina Huth ◽  
Moritz Urschbach ◽  
Rainer Haag ◽  
...  

The synthesis of a sulfate-modified dendritic peptide amphiphile and its self-assembly into one-dimensional rod-like architectures in aqueous medium is reported. The influence of the ionic strength on the supramolecular polymerization was probed via circular dichroism spectroscopy and cryogenic transmission electron microscopy. Physiological salt concentrations efficiently screen the charges of the dendritic building block equipped with eight sulfate groups and trigger the formation of rigid supramolecular polymers. Since multivalent sulfated supramolecular structures mimic naturally occurring L-selectin ligands, the corresponding affinity was evaluated using a competitive SPR binding assay and benchmarked to an ethylene glycol-decorated supramolecular polymer.


2015 ◽  
Vol 19 (6) ◽  
pp. 484-497 ◽  
Author(s):  
Chuang Han ◽  
Siqi Liu ◽  
Zi-Rong Tang ◽  
Yi-Jun Xu

2021 ◽  
Vol 03 (02) ◽  
pp. 174-183
Author(s):  
P. Chidchob ◽  
S. A. H. Jansen ◽  
S. C. J. Meskers ◽  
E. Weyandt ◽  
N. P. van Leest ◽  
...  

The introduction of a chemical additive to supramolecular polymers holds high potential in the development of new structures and functions. In this regard, various donor- and acceptor-based molecules have been applied in the design of these noncovalent polymers. However, the incorporation of boron–nitrogen frustrated Lewis pairs in such architectures is still rare despite their many intriguing properties in catalysis and materials science. The limited choices of suitable boron derivatives represent one of the main limitations for the advancement in this direction. Here, we examine the use of the commercially available tris(pentafluorophenyl)borane with various triphenylamine derivatives to create supramolecular B–N charge transfer systems. Our results highlight the importance of a proper balance between the donor/acceptor strength and the driving force for supramolecular polymerization to achieve stable, long-range ordered B–N systems. Detailed analyses using electron paramagnetic resonance and optical spectroscopy suggest that tris(pentafluorophenyl)borane displays complex behavior with the amide-based triphenylamine supramolecular polymers and may interact in dimers or larger chiral aggregates, depending on the specific structure of the triphenylamines.


2014 ◽  
Vol 250 ◽  
pp. 148-156 ◽  
Author(s):  
Xiaomin Guo ◽  
Xiangting Dong ◽  
Jinxian Wang ◽  
Wensheng Yu ◽  
Guixia Liu

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oleksandr Shyshov ◽  
Shyamkumar Vadakket Haridas ◽  
Luca Pesce ◽  
Haoyuan Qi ◽  
Andrea Gardin ◽  
...  

AbstractThe development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.


2010 ◽  
Vol 13 (7) ◽  
pp. B69 ◽  
Author(s):  
Christiane de Arruda Rodrigues ◽  
Norma R. de Tacconi ◽  
Wilaiwan Chanmanee ◽  
Krishnan Rajeshwar

Sign in / Sign up

Export Citation Format

Share Document