scholarly journals Living supramolecular polymerization of fluorinated cyclohexanes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oleksandr Shyshov ◽  
Shyamkumar Vadakket Haridas ◽  
Luca Pesce ◽  
Haoyuan Qi ◽  
Andrea Gardin ◽  
...  

AbstractThe development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.

2020 ◽  
Vol 02 (01) ◽  
pp. 041-046 ◽  
Author(s):  
Yeray Dorca ◽  
Cristina Naranjo ◽  
Goutam Ghosh ◽  
Rafael Gómez ◽  
Gustavo Fernández ◽  
...  

We describe the synthesis of two propeller-shaped, emissive trisbiphenylamines 1 and (S)-2. Whilst achiral 1 forms supramolecular polymers following a cooperative mechanism, the self-assembly of chiral (S)-2 can be described by an isodesmic mechanism. Despite the isodesmic character of the supramolecular polymerization of (S)-2, an efficient transfer of chirality from the embedded point chirality of the peripheral side chains to the aggregates is demonstrated. The co-assembly of 1 and (S)-2 in a sergeants-and-soldiers experiment shows a very different dichroic response to that registered for pristine (S)-2, with a copolymerization curve displaying two transitions. Both these transitions coincide with those observed for the pristine achiral and chiral components, thus suggesting a self-sorting effect.


2021 ◽  
Vol 03 (02) ◽  
pp. 174-183
Author(s):  
P. Chidchob ◽  
S. A. H. Jansen ◽  
S. C. J. Meskers ◽  
E. Weyandt ◽  
N. P. van Leest ◽  
...  

The introduction of a chemical additive to supramolecular polymers holds high potential in the development of new structures and functions. In this regard, various donor- and acceptor-based molecules have been applied in the design of these noncovalent polymers. However, the incorporation of boron–nitrogen frustrated Lewis pairs in such architectures is still rare despite their many intriguing properties in catalysis and materials science. The limited choices of suitable boron derivatives represent one of the main limitations for the advancement in this direction. Here, we examine the use of the commercially available tris(pentafluorophenyl)borane with various triphenylamine derivatives to create supramolecular B–N charge transfer systems. Our results highlight the importance of a proper balance between the donor/acceptor strength and the driving force for supramolecular polymerization to achieve stable, long-range ordered B–N systems. Detailed analyses using electron paramagnetic resonance and optical spectroscopy suggest that tris(pentafluorophenyl)borane displays complex behavior with the amide-based triphenylamine supramolecular polymers and may interact in dimers or larger chiral aggregates, depending on the specific structure of the triphenylamines.


2007 ◽  
Vol 121-123 ◽  
pp. 401-406
Author(s):  
Jenn Sen Lin ◽  
Shin Pon Ju ◽  
M.H. Weng ◽  
Wen Jay Lee

In this study, the molecular dynamics is employed to simulate the selfassembly of crossed gold nanowires at various temperatures. The nanowires with a multi-shell helical (HMS) structure are different from those of the bulk FCC structure. This work compares the morphology of crossed HMS nanowires with 7-1 structure after self-assembly and investigates the atom motion trajectory on the joint. The structure transform are observed from helical structure to FCC structure by angular correlation function (ACF). The results can be suggested for a nano-scale circuit design.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Elisabeth Weyandt ◽  
Luigi Leanza ◽  
Riccardo Capelli ◽  
Giovanni M. Pavan ◽  
Ghislaine Vantomme ◽  
...  

AbstractMulti-component systems often display convoluted behavior, pathway complexity and coupled equilibria. In recent years, several ways to control complex systems by manipulating the subtle balances of interaction energies between the individual components have been explored and thereby shifting the equilibrium between different aggregate states. Here we show the enantioselective chain-capping and dilution-induced supramolecular polymerization with a Zn2+-porphyrin-based supramolecular system when going from long, highly cooperative supramolecular polymers to short, disordered aggregates by adding a monotopic Mn3+-porphyrin monomer. When mixing the zinc and manganese centered monomers, the Mn3+-porphyrins act as chain-cappers for Zn2+-porphyrin supramolecular polymers, effectively hindering growth of the copolymer and reducing the length. Upon dilution, the interaction between chain-capper and monomers weakens as the equilibria shift and long supramolecular polymers form again. This dynamic modulation of aggregate morphology and length is achieved through enantioselectivity in the aggregation pathways and concentration-sensitive equilibria. All-atom and coarse-grained molecular simulations provide further insights into the mixing of the species and their exchange dynamics. Our combined experimental and theoretical approach allows for precise control of molecular self-assembly and chiral discrimination in complex systems.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 285 ◽  
Author(s):  
Li Wang ◽  
Coucong Gong ◽  
Xinzhu Yuan ◽  
Gang Wei

Biomolecular self-assembly provides a facile way to synthesize functional nanomaterials. Due to the unique structure and functions of biomolecules, the created biological nanomaterials via biomolecular self-assembly have a wide range of applications, from materials science to biomedical engineering, tissue engineering, nanotechnology, and analytical science. In this review, we present recent advances in the synthesis of biological nanomaterials by controlling the biomolecular self-assembly from adjusting internal interactions and external stimulations. The self-assembly mechanisms of biomolecules (DNA, protein, peptide, virus, enzyme, metabolites, lipid, cholesterol, and others) related to various internal interactions, including hydrogen bonds, electrostatic interactions, hydrophobic interactions, π–π stacking, DNA base pairing, and ligand–receptor binding, are discussed by analyzing some recent studies. In addition, some strategies for promoting biomolecular self-assembly via external stimulations, such as adjusting the solution conditions (pH, temperature, ionic strength), adding organics, nanoparticles, or enzymes, and applying external light stimulation to the self-assembly systems, are demonstrated. We hope that this overview will be helpful for readers to understand the self-assembly mechanisms and strategies of biomolecules and to design and develop new biological nanostructures or nanomaterials for desired applications.


2014 ◽  
Vol 50 (59) ◽  
pp. 7982-7985 ◽  
Author(s):  
Feng Lin ◽  
Tian-Guang Zhan ◽  
Tian-You Zhou ◽  
Kang-Da Zhang ◽  
Guang-Yu Li ◽  
...  

Two types of stick-like supramolecular polymers possessing rigid backbones have been fabricated through the self-assembly of rod-like monomers and cucurbit[8]uril in water.


2011 ◽  
Vol 133 (23) ◽  
pp. 8961-8971 ◽  
Author(s):  
Gerd Gröger ◽  
Wolfgang Meyer-Zaika ◽  
Christoph Böttcher ◽  
Franziska Gröhn ◽  
Christian Ruthard ◽  
...  

2018 ◽  
Vol 54 (33) ◽  
pp. 4112-4115 ◽  
Author(s):  
Nicolas M. Casellas ◽  
Sílvia Pujals ◽  
Davide Bochicchio ◽  
Giovanni M. Pavan ◽  
Tomás Torres ◽  
...  

A comprehensive understanding of the different interactions involved in the self-assembly of two different structures has been accomplished.


Sign in / Sign up

Export Citation Format

Share Document