scholarly journals Gold Nanoparticles Endowed with Low-Temperature Colloidal Stability by Cyclic Polyethylene Glycol in Ethanol

Soft Matter ◽  
2021 ◽  
Author(s):  
M. Ali Aboudzadeh ◽  
Joscha Kruse ◽  
Maria Sanromán-Iglesias ◽  
Daniele Cangialosi ◽  
Ángel Alegría ◽  
...  

The colloidal stability of metal nanoparticles is tremendously dependent on the thermal behavior of polymer brushes. Neat polyethylene glycol (PEG) presents an unconventional upper critical solution temperature in ethanol, where...

2017 ◽  
Vol 5 (25) ◽  
pp. 4926-4933 ◽  
Author(s):  
Xuan Xue ◽  
Lalitha Thiagarajan ◽  
Shwana Braim ◽  
Brian R Saunders ◽  
Kevin M Shakesheff ◽  
...  

We report the synthesis of thermo-responsive polymer brushes with Upper Critical Solution Temperature (UCST)-type behaviour on glass to provide a new means to control cell attachment.


MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3353-3360
Author(s):  
Susana Helena Arellano Ramírez ◽  
Perla García Casillas ◽  
Christian Chapa González

AbstractA significant area of research is biomedical applications of nanoparticles which involves efforts to control the physicochemical properties through simple and scalable processes. Gold nanoparticles have received considerable attention due to their unique properties that they exhibit based on their morphology. Gold nanospheres (AuNSs) and nanorods (AuNRs) were prepared with a seed-mediated method followed of polyethylene glycol (PEG)-coating. The seeds were prepared with 0.1 M cetyltrimethyl-ammonium bromide (CTAB), 0.005 M chloroauric acid (HAuCl4), and 0.01 M sodium borohydride (NaBH4) solution. Gold nanoparticles with spherical morphology was achieved by growth by aggregation at room temperature, while to achieve the rod morphology 0.1 M silver nitrate (AgNO3) and 0.1 M ascorbic acid solution were added. The gold nanoparticles obtained by the seed-mediated synthesis have spherical or rod shapes, depending on the experimental conditions, and a uniform particle size. Surface functionalization was developed using polyethylene glycol. Morphology, and size distribution of AuNPs were evaluated by Field Emission Scanning Electron Microscopy. The average size of AuNSs, and AuNRs was 7.85nm and 7.96 x 31.47nm respectively. Fourier transform infrared spectrometry was performed to corroborate the presence of PEG in the AuNPs surface. Additionally, suspensions of AuNSs and AuNRs were evaluated by UV-Vis spectroscopy. Gold nanoparticles were stored for several days at room temperature and it was observed that the colloidal stability increased once gold nanoparticles were coated with PEG due to the shield formed in the surface of the NPs and the increase in size which were 9.65±1.90 nm of diameter for AuNSs and for AuNRs were 29.03±5.88 and 8.39±1.02 nm for length and transverse axis, respectively.


Soft Matter ◽  
2021 ◽  
Author(s):  
Aliaksei Aliakseyeu ◽  
Victoria Albright ◽  
Danielle Yarbrough ◽  
Samantha Hernandez ◽  
Qing Zhou ◽  
...  

This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid)...


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4066
Author(s):  
David Herrera Robalino ◽  
María del Mar Durán del Amor ◽  
Carmen María Almagro Gómez ◽  
José Ginés Hernández Cifre

The adsorption of the thermoresponsive positively charged copolymer poly(N-isopropylacrylamide)-block-poly(3-acrylamidopropyl)trimethylammonium chloride, PNIPAAM48-b-PAMPTMA6(+), onto negatively charged gold nanoparticles can provide stability to the nanoparticles and make the emerging structure tunable by temperature. In this work, we characterize the nanocomposite formed by gold nanoparticles and copolymer chains and study the influence of the copolymer on the expected aggregation process that undergoes those nanoparticles at high ionic strength. We also determine the lower critical solution temperature (LCST) of the copolymer (around 42 °C) and evaluate the influence of the temperature on the nanocomposite. For those purposes, we use dynamic light scattering, UV-vis spectroscopy and transmission electron microscopy. At the working PNIPAAM48-b-PAMPTMA6(+) concentration, we observe the existence of copolymer structures that trap the gold nanoparticles and avoid the formation of nanoparticles aggregates. Finally, we discuss how these structures can be useful in catalysis and nanoparticles recovery.


Sign in / Sign up

Export Citation Format

Share Document