Promoted Alkaline Hydrogen Evolution by N-doped Pt-Ru Single Atoms Alloy

Author(s):  
Mi Luo ◽  
Jinyan Cai ◽  
Jiasui Zou ◽  
Zheng Jiang ◽  
Gongming Wang ◽  
...  

Since water dissociation and H desorption kinetics essentially determine the performance of alkaline hydrogen evolution reaction (HER), rationally regulating surface adsorption behavior to achieve superior catalytic surface is always challenging...

Author(s):  
Jing-Fang Huang ◽  
Ruo-Hua Zeng ◽  
Jeng-Lung Chen

The downsizing of catalysts to atomic-scale or subnanometer size can effectively maximize the atomic utilization and enhance the electrocatalytic activity. Carbon-supported Pt single atoms or sub-nanometer-sized Pt clusters (Ptc/C) are...


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


2020 ◽  
Vol 13 (9) ◽  
pp. 3110-3118 ◽  
Author(s):  
Zhao Li ◽  
Wenhan Niu ◽  
Zhenzhong Yang ◽  
Abdelkader Kara ◽  
Qi Wang ◽  
...  

The alkaline hydrogen evolution reaction (A-HER) holds great promise for clean hydrogen fuel generation but its practical utilization is severely hindered by the sluggish kinetics for water dissociation in alkaline solutions.


2019 ◽  
Vol 7 (28) ◽  
pp. 16859-16866 ◽  
Author(s):  
Shan-Shan Lu ◽  
Li-Ming Zhang ◽  
Yi-Wen Dong ◽  
Jia-Qi Zhang ◽  
Xin-Tong Yan ◽  
...  

The design of electrocatalysts including precious and nonprecious metals for the hydrogen evolution reaction (HER) in alkaline media remains challenging due to the sluggish reaction kinetics caused by the additional water dissociation step.


Sign in / Sign up

Export Citation Format

Share Document