Commercial-Level Mass-Loading MnO2 with Ion Diffusion Channels for High-Performing Aqueous Energy Storage Devices

Author(s):  
Yaxiong Zhang ◽  
Xiaosha Cui ◽  
Jiecai Fu ◽  
Yupeng Liu ◽  
Yin Wu ◽  
...  

Transition metal oxides have shown renewed interest as promising electrode materials for high-performance electrochemical energy storage devices. However, its cycle stability deteriorates significantly with the increasing mass loading due to...

2021 ◽  
Author(s):  
Muhammad Irfan ◽  
Xianhua Liu ◽  
Suraya Mushtaq ◽  
Jonnathan Cabrera ◽  
Pingping Zhang

Abstract Development of sustainable electrochemical energy storage devices faces great challenge in exploring highly efficient and low cost electrode materials. Biomass waste derived carbonaceous materials can be used as an alternative to expensive metals in supercapacitor. However, their application limited by low performance. In this study, the combination use of persimmon waste derived carbon and transition metal nitride demonstrated strong potential for supercapacitor application. Persimmon based carbonaceous gel decorated with bimetallic-nitride (N-NiCo/PC) was firstly synthesized through a green hydrothermal method. Electrochemical properties of N-NiCo/PC as electrode in 6 M KOH electrolyte solution were evaluated by using cyclic voltammetry (CV) and charge-discharge measurements. The N-NiCo/PC exhibited 895.5 F/g specific capacitance at 1 A/g current density and maintained 91.5% capacitance retention after 900 cycles. Hence, the bimetallic nitride-based-composite catalyst is a potentially suitable material for high-performance energy storage devices. In addition, this work demonstrated a promising pathway for transforming environmental waste into sustainable energy conversion materials.


Author(s):  
Juan Yu ◽  
Xuyang Wang ◽  
Jiaxin Peng ◽  
Xuefeng Jia ◽  
Linbo Li ◽  
...  

Abstract Biomass-activated carbon materials are promising electrode materials for lithium-ion hybrid capacitors (LiCs) because of their natural hierarchical pore structure. The efficient utilization of structural pores in activated carbon is very important for their electrochemical performance. Herein, porous biomass-activated carbon (PAC) with large specific surface area was prepared using a one-step activation method with biomass waste as the carbon source and ZnCl2 as the activator. To further improve its pore structure utilization efficiency, the PAC was doped with nitrogen using urea as the nitrogen source. The experimental results confirmed that PAC-1 with a high nitrogen doping level of 4.66% exhibited the most efficient pore utilization among all the samples investigated in this study. PAC-1 exhibited 92% capacity retention after 8000 cycles, showing good cycling stability. Then, to maximize the utilization of high-efficiency energy storage devices, LiNi0.8Co0.15Al0.05O2 (NCA), a promising cathode material for lithium-ion batteries with high specific capacity, was compounded with PAC-1 in different ratios to obtain NCA@PC composites. The NCA@PC-9 composite exhibited excellent capacitance in LiCs and an energy density of 210.9 Wh kg-1 at a high power density of 13.3 kW kg-1. These results provide guidelines for the design of high-performance and low-cost energy storage devices.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 505 ◽  
Author(s):  
Samarjeet Singh Siwal ◽  
Qibo Zhang ◽  
Nishu Devi ◽  
Vijay Kumar Thakur

In recent years, numerous discoveries and investigations have been remarked for the development of carbon-based polymer nanocomposites. Carbon-based materials and their composites hold encouraging employment in a broad array of fields, for example, energy storage devices, fuel cells, membranes sensors, actuators, and electromagnetic shielding. Carbon and its derivatives exhibit some remarkable features such as high conductivity, high surface area, excellent chemical endurance, and good mechanical durability. On the other hand, characteristics such as docility, lower price, and high environmental resistance are some of the unique properties of conducting polymers (CPs). To enhance the properties and performance, polymeric electrode materials can be modified suitably by metal oxides and carbon materials resulting in a composite that helps in the collection and accumulation of charges due to large surface area. The carbon-polymer nanocomposites assist in overcoming the difficulties arising in achieving the high performance of polymeric compounds and deliver high-performance composites that can be used in electrochemical energy storage devices. Carbon-based polymer nanocomposites have both advantages and disadvantages, so in this review, attempts are made to understand their synergistic behavior and resulting performance. The three electrochemical energy storage systems and the type of electrode materials used for them have been studied here in this article and some aspects for example morphology, exterior area, temperature, and approaches have been observed to influence the activity of electrochemical methods. This review article evaluates and compiles reported data to present a significant and extensive summary of the state of the art.


2017 ◽  
Vol 5 (3) ◽  
pp. 1094-1102 ◽  
Author(s):  
Yang Jiao ◽  
Jian Pei ◽  
Dahong Chen ◽  
Chunshuang Yan ◽  
Yongyuan Hu ◽  
...  

Metal–organic frameworks (MOFs) have obtained increasing attention as a kind of novel electrode material for energy storage devices.


2015 ◽  
Vol 3 (4) ◽  
pp. 1364-1387 ◽  
Author(s):  
Muhammad-Sadeeq Balogun ◽  
Weitao Qiu ◽  
Wang Wang ◽  
Pingping Fang ◽  
Xihong Lu ◽  
...  

This review highlights the progress and development of metal nitrides as electrode materials for energy storage devices.


2018 ◽  
Vol 6 (17) ◽  
pp. 8053-8058 ◽  
Author(s):  
Jian Hao ◽  
Jiemin Wang ◽  
Si Qin ◽  
Dan Liu ◽  
Yinwei Li ◽  
...  

A novel B/N co-doped carbon nanospheres framework is synthesized by a facile, economic, environmental and scalable method. The as-obtained materials display extra-high capacitive performance and exceptional long cycle stability with the merits of high energy and power density. We believe that this material will be applicable in the application of integrated energy storage devices.


2021 ◽  
Author(s):  
Qichao Song ◽  
Chunguang Yang

Abstract Todays, metal-organic frameworks (MOFs) and their derived structures have been extensively investigated as the novel electrode materials in energy storage area due to their stable porous architectures and exceptionally large specific surface area. In this study, bimetallic Ni,Zn-MOF is synthesized onto Ni foam via a novel indirect cathodic electrodeposition method for the first time. After that, the fabricated Ni,Zn-MOFs onto Ni foam was converted to corresponding bi-metal hydroxide@C/Ni foam through direct chemical treating with 6M KOH solution. The obtained Ni,Zn-MOFs/NF and Ni2 − xZnx (OH)2@C/NF electrodes are characterized through XRD, FT-IR, FE-SEM and EDS analyses. These analyses results confirmed deposition of well-defined crystalline porous sheet-like structures of Ni3 − xZnx(BTC)2 deposited onto Ni foam, where the hydroxide@C electrode was also exhibited similar morphology. As the binder-free electrode, the as-prepared Ni,Zn-MOF@Ni foam exhibited the superior storage capacities of 356.1 mAh g− 1 and 255.5 mAh g− 1 as well as good cycling stabilities of 94.2 % and 84.5 % after 6000 consecutive charge/discharge cycles at the current densities of 5 and 15 A g− 1, respectively. On the other hand, Ni,Zn-MOF derived hydroide@C/Ni foam presented the superior capacities of 545 mAh g− 1 and 406 mAh g− 1 as well as proper cycle lifes of 91.8 % and 78.3 % after 6000 cycling at the applied loads of 5 and 15 A g− 1, respectively. Based on these findings, both of these fabricated battery-type electrodes are introduced as the promising candidates for use in energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document