Efficient Defect Passivation with Niacin for High-Performance and Stable Perovskite Solar Cells

Author(s):  
Jing Ren ◽  
Shurong Wang ◽  
Jianxing Xia ◽  
Chengbo Li ◽  
Lisha Xie ◽  
...  

Defects, inevitably produced in the solution-processed halide perovskite films, can act as charge carrier recombination centers to induce severe energy loss in perovskite solar cells (PSCs). Suppressing these trap states...

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Essa A. Alharbi ◽  
M. Ibrahim Dar ◽  
Neha Arora ◽  
Mohammad Hayal Alotaibi ◽  
Yahya A. Alzhrani ◽  
...  

High photovoltages and power conversion efficiencies of perovskite solar cells (PSCs) can be realized by controlling the undesired nonradiative charge carrier recombination. Here, we introduce a judicious amount of guanidinium iodide into mixed-cation and mixed-halide perovskite films to suppress the parasitic charge carrier recombination, which enabled the fabrication of >20% efficient and operationally stable PSCs yielding reproducible photovoltage as high as 1.20 V. By introducing guanidinium iodide into the perovskite precursor solution, the bandgap of the resulting absorber material changed minimally; however, the nonradiative recombination diminished considerably as revealed by time-resolved photoluminescence and electroluminescence studies. Furthermore, using capacitance-frequency measurements, we were able to correlate the hysteresis features exhibited by the PSCs with interfacial charge accumulation. This study opens up a path to realize new record efficiencies for PSCs based on guanidinium iodide doped perovskite films.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Essa A. Alharbi ◽  
M. Ibrahim Dar ◽  
Neha Arora ◽  
Mohammad Hayal Alotaibi ◽  
Yahya A. Alzhrani ◽  
...  

High photovoltages and power conversion efficiencies of perovskite solar cells (PSCs) can be realized by controlling the undesired nonradiative charge carrier recombination. Here, we introduce a judicious amount of guanidinium iodide into mixed-cation and mixed-halide perovskite films to suppress the parasitic charge carrier recombination, which enabled the fabrication of >20% efficient and operationally stable PSCs yielding reproducible photovoltage as high as 1.20 V. By introducing guanidinium iodide into the perovskite precursor solution, the bandgap of the resulting absorber material changed minimally; however, the nonradiative recombination diminished considerably as revealed by time-resolved photoluminescence and electroluminescence studies. Furthermore, using capacitance-frequency measurements, we were able to correlate the hysteresis features exhibited by the PSCs with interfacial charge accumulation. This study opens up a path to realize new record efficiencies for PSCs based on guanidinium iodide doped perovskite films.


2015 ◽  
Vol 7 (48) ◽  
pp. 26445-26454 ◽  
Author(s):  
Nirmal Adhikari ◽  
Ashish Dubey ◽  
Devendra Khatiwada ◽  
Abu Farzan Mitul ◽  
Qi Wang ◽  
...  

2017 ◽  
Vol 10 (4) ◽  
pp. 885-892 ◽  
Author(s):  
Nicola Gasparini ◽  
Luca Lucera ◽  
Michael Salvador ◽  
Mario Prosa ◽  
George D. Spyropoulos ◽  
...  

We present a novel ternary organic solar cell with an uncommonly thick active layer (∼300 nm), featuring thickness invariant charge carrier recombination and delivering 11% power conversion efficiency (PCE).


2019 ◽  
Vol 11 (43) ◽  
pp. 40163-40171 ◽  
Author(s):  
Xiang Yao ◽  
Luyao Zheng ◽  
Xiaotao Zhang ◽  
Wenzhan Xu ◽  
Wenping Hu ◽  
...  

2020 ◽  
Vol 69 (4) ◽  
pp. 046101
Author(s):  
Qing-Zhong Zhou ◽  
Feng Guo ◽  
Ming-Rui Zhang ◽  
Qing-Liang You ◽  
Biao Xiao ◽  
...  

Science ◽  
2021 ◽  
Vol 371 (6532) ◽  
pp. eabd8598
Author(s):  
Zhenyi Ni ◽  
Shuang Xu ◽  
Jinsong Huang

Ravishankar et al. claimed that drive-level capacitance profiling (DLCP) cannot resolve trap density in perovskites of given thickness. We point out that the trap densities derived by DLCP are from the differential capacitance at different frequencies; thus, the background charges caused by diffusion and geometry capacitance have been subtracted. Even for the nondifferential doping analysis, the contribution from diffusion capacitance is negligible and that from geometry capacitance is excluded.


Nanoscale ◽  
2018 ◽  
Vol 10 (18) ◽  
pp. 8483-8495 ◽  
Author(s):  
Shengli Niu ◽  
Zhiyong Liu ◽  
Ning Wang

A dihydronaphthyl-based C60 bisadduct (NCBA) acceptor was introduced as a third component material to typical binary polymer solar cells (PSCs).


Sign in / Sign up

Export Citation Format

Share Document