nonradiative recombination
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 115)

H-INDEX

40
(FIVE YEARS 10)

2022 ◽  
Vol 276 ◽  
pp. 115567
Author(s):  
M. Wełna ◽  
K. Żelazna ◽  
A. Létoublon ◽  
C. Cornet ◽  
Ł. Janicki ◽  
...  

Author(s):  
Junming Qiu ◽  
Qisen Zhou ◽  
Donglin Jia ◽  
Yunfei Wang ◽  
Shuang Li ◽  
...  

CsPbI3 inorganic perovskite shows high potential for single-junction or tandem solar cells due to its suitable bandgap energy (Eg=~1.7 eV), but defect-assisted nonradiative recombination and unmatched interfacial band alignment within...


2022 ◽  
Author(s):  
Zhen Wang ◽  
Chenguang Yang ◽  
Yuying Cui ◽  
Li Xie ◽  
Feng Hao

Solvent engineering has been widely employed in the preparation of high-quality perovskite films for emerging halide perovskite solar cells (PSCs). However, the heavy use of toxic solvents (such as N-methyl-2-pyrrolidone...


Author(s):  
Shigefusa F. Chichibu ◽  
Hideto MIYAKE ◽  
Akira Uedono

Abstract To give a clue for increasing emission efficiencies of Al x Ga1-x N-based deep ultraviolet light emitters, the origins and influences on carrier concentration and minority carrier lifetime (τminority), which determines the internal quantum efficiency, of midgap recombination centers in c-plane Si-doped Al0.60Ga0.40N epilayers and Al0.68Ga0.32N quantum wells (QWs) grown by metalorganic vapor phase epitaxy were studied by temporally and spatially resolved luminescence measurements, making a correlation with the results of positron annihilation measurement. For the Al0.60Ga0.40N epilayers, τminority decreased as the concentration of cation vacancies (VIII) increased, indicating that VIII, most probably decorated with nitrogen vacancies (VN), VIII(VN) n , are major nonradiative recombination centers (NRCs). For heavily Si-doped Al0.60Ga0.40N, a generation of electron-compensating complexes (VIII-SiIII) is suggested. For lightly Si-doping regime, τminority of the QW emission was increased by appropriate Si-doping in the wells, which simultaneously increased the terrace width. The importance of wetting conditions is suggested for decreasing the NRC concentration.


Author(s):  
Billy Stanbery ◽  
Daniel Abou-Ras ◽  
Akira Yamada ◽  
Lorelle Mansfield

Abstract Copper indium selenide chalcopyrite-structure alloys with gallium (CIGS) are unique among the highest performing photovoltaic (PV) semiconductor technologies. They are structurally disordered, nonstoichiometric materials that have been engineered to achieve remarkably low bulk nonradiative recombination levels. Nevertheless, their performance can be further improved. This review adopts a fundamental thermodynamic perspective to comparatively assess the root causes of present limitations on CIGS PV performance. The topics of selectivity and passivation of contacts to CIGS and its multinary alloys are covered, highlighting pathways to maximizing the electrochemical potential between those contacts under illumination. An overview of absorber growth methods and resulting properties is also provided. We recommend that CIGS researchers consider strategies that have been successfully implemented in the more mature wafer-based GaAs and Si PV device technologies, based on the paradigm of an idealized PV device design using an isotropic absorber with minimal nonradiative recombination, maximal light trapping, and both electron-selective and hole-selective passivated contacts. We foresee that CIGS technology will reach the 25% efficiency level within the next few years through enhanced collection and reduced recombination. To significantly impact power-generation applications, cost-effective, manufacturable solutions are also essential.


Author(s):  
Hamidou TANGARA ◽  
Yulu He ◽  
Muhammad Monirul Islam ◽  
Shogo ISHIZUKA ◽  
Takeaki Sakurai

Abstract Heat light soaking (HLS) has been known to impact the photovoltaic parameters of Cu(In,Ga)Se2 (CIGS) solar cells for a long time. Recently, the focus shifted to the effect of the procedure on alkali fluoride-treated CIGS. Here, we investigate the impact of long-term HLS on the open-circuit (VOC) loss in high-efficiency CIGS with potassium fluoride (KF) and sodium fluoride (NaF) post-deposition treatment (PDT). HLS is shown to increase the net doping density, however, the subsequent improvement of the VOC is lower than expected. Using an analysis based on the SQ theory, we show that HLS reduces the nonradiative recombination rate in the bulk but increases the one at the interface. We present a model to explain the increase of interface recombination. We further demonstrate that a combination of HLS and KF/NaF-PDT is necessary to enhance the positive impacts of HLS and mitigate the detrimental ones leading to high-efficiency CIGS devices (22%).


2021 ◽  
pp. 2100271
Author(s):  
Ruiyun Chen ◽  
Bo Xia ◽  
Wenjin Zhou ◽  
Guofeng Zhang ◽  
Chengbing Qin ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1312
Author(s):  
Xue Zhang ◽  
Wenxian Yang ◽  
Zhiwei Xing ◽  
Haibing Qiu ◽  
Ying Gu ◽  
...  

InGaN quantum dots (QDs) are promising candidates for GaN-based all-visible optoelectronic devices such as micro light-emitting diode and laser. In this study, self-assembled InGaN/GaN multi-quantum dots (MQDs) have been grown by plasma-assisted molecular beam epitaxy on c-plane GaN-on-sapphire template. A high density of over 3.8 × 1010 cm−2 is achieved and InGaN QDs exhibit a relatively uniform size distribution and good dispersity. Strong localization effect in as-grown InGaN QDs has been evidenced by temperature-dependent photoluminescence (PL). The variation of peak energy is as small as 35 meV with increasing temperature from 10 K to 300 K, implying excellent temperature stability of emission wavelength for InGaN MQDs. Moreover, the radiative and nonradiative recombination times were calculated by time-resolved PL (TRPL) measurements, and the temperature dependence of PL decay times reveal that radiative recombination dominates the recombination process due to the low dislocation density of QDs structure.


Sign in / Sign up

Export Citation Format

Share Document