Controllable spin direction in nonmagnetic BX/MX2 (M = Mo or W; X = S, Se and Te) van der Waals heterostructures by switching between the Rashba splitting and valley polarization

Author(s):  
Dongxue Zhang ◽  
Baozeng Zhou

Manipulating physical properties using the spin degree of freedom constitutes a major part of modern condensed matter physics and is a key aspect for spintronics devices. Using density functional theory...

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hongcun Bai ◽  
Wenxin Ji ◽  
Xiangyu Liu ◽  
Liqiong Wang ◽  
Nini Yuan ◽  
...  

The heterofullerenes C59X (X = B, N, Al, Si, P, Ga, Ge, and As) were investigated by quantum chemistry calculations based on density functional theory. These hybrid cages can be seen as doping the buckminsterfullerene by heteroatom substitution. The geometrical structures, relative stabilities, electronic properties, vibrational frequencies, dielectric constants, and aromaticities of the doped cages were studied systemically and compared with those of the pristine C60cage. It is found that the doped cages with different heteroatoms exhibit various electronic, vibrational, and aromatic properties. These results imply the possibility to modulate the physical properties of these fullerene-based materials by tuning substitution elements.


Nanoscale ◽  
2021 ◽  
Author(s):  
Maria Javaid ◽  
Patrick David Taylor ◽  
Sherif Abdulkader Tawfik ◽  
Michelle Jeanette Sapountzis Spencer

The ferroelectric material In2Se3 is currently of significant interest due to its built-in polarisation characteristics that can significantly modulate its electronic properties. Here we employ density functional theory to determine...


2020 ◽  
Vol 22 (14) ◽  
pp. 7577-7585 ◽  
Author(s):  
Florian R. Rehak ◽  
GiovanniMaria Piccini ◽  
Maristella Alessio ◽  
Joachim Sauer

Contrary to common believe, for eight adsorption cases, neither D3 or TS are an improvement compared to D2 nor van der Waals functionals or dDsC. Only the many body approaches are slightly better than D2(Ne) which uses Ne parameters for Mg2+ ions.


Sign in / Sign up

Export Citation Format

Share Document