499. Cryoscopic measurements in sulphuric acid. Part III. The solutes nitric acid, dinitrogen pentoxide, dinitrogen tetroxide, and dinitrogen trioxide. Cryoscopic proof of the formation of the nitronium ion, NO2 +

Author(s):  
R. J. Gillespie ◽  
J. Graham ◽  
E. D. Hughes ◽  
C. K. Ingold ◽  
E. R. A. Peeling
2018 ◽  
Author(s):  
Hui Yun ◽  
Weihao Wang ◽  
Tao Wang ◽  
Men Xia ◽  
Chuan Yu ◽  
...  

Abstract. Nitrate (NO3−) has become a major component of fine particulate matter (PM2.5) during hazy days in China. However, the role of the heterogeneous reactions of dinitrogen pentoxide (N2O5) in nitrate formation is not well constrained. In January 2017, a severe haze event occurred in the Pearl River Delta (PRD) of southern China during which high levels of PM2.5 (~ 400 μg m−3) and O3 (~ 160 ppbv) were observed at a semi-rural site (Heshan) in the western PRD. Nitrate concentrations were up to 108 μg m−3 (1 h time resolution), and the contribution of nitrate to PM2.5 reached nearly 40 %. Concurrent increases in NO3− and ClNO2 (with a maximum value of 8.3 ppbv in 1 min time resolution) were observed in the first several hours after sunset, indicating an intense N2O5 heterogeneous uptake on aerosols. The formation potential of NO3− via N2O5 heterogeneous reactions was estimated to be 39.7 to 77.3 μg m−3 in the early hours (3 to 6 h) after sunset based on the measurement data, which could completely explain the measured increase in the NO3− concentration during the same time period. Daytime production of nitric acid from the gas-phase reaction of OH + NO2 was calculated with a chemical box model built using the Master Chemical Mechanism (MCM v3.3.1) and constrained by the measurement data. The integrated nocturnal nitrate formed via N2O5 chemistry was comparable to or even higher than the nitric acid formed during the daytime. This study confirms that N2O5 heterogeneous chemistry was a significant source of aerosol nitrate during hazy days in southern China.


2010 ◽  
Vol 10 (3) ◽  
pp. 396-400 ◽  
Author(s):  
Abdullah Abdullah ◽  
D.R. Wicakso ◽  
A.B. Junaidi ◽  
Badruzsaufari Badruzsaufari

Nitration of biodiesel from Jatropha curcas oil using mixture of HNO3 and H2SO4 had been done in an attempt to obtain a cetane improver or cetane number enhancer. The nitration was carried out by varying the numbers of moles of sulphuric acid, nitric acid, temperature and time. The process was conducted in a round bottom flask reactor that equipped with a magnetic stirrer and a ball cooler on a water batch. The mixture of H2SO4 and HNO3 was placed in the reactor and subsequently added slowly with biodiesel drop by drop. The results showed that increasing the mole numbers of sulphuric acid tends to reduce the yield or volume and total N of nitrated biodiesel. Increasing the number of moles of nitric acid tends to increase the yield, but decrease the value of total N. While increasing of temperature and reaction time tends to reduce the yield and total N. From FTIR spectra product was estimated as a mixture of esters of alkyl nitrates and nitro. From the testing of cetane number it can be predicted that nitrated biodiesel potentially as cetane improver.


Sign in / Sign up

Export Citation Format

Share Document