Surface chemistry, adsorption energy, and adsorption equilibria

1961 ◽  
Vol 15 (1) ◽  
pp. 99 ◽  
Author(s):  
A. V. Kiselev
2007 ◽  
Vol 25 (8) ◽  
pp. 597-606
Author(s):  
Paweł Szabelski ◽  
Krzysztof Nieszporek ◽  
Mateusz Drach

The Monte Carlo simulation method was used to test the accuracy of approximate equations derived for binary gas adsorption onto a heterogeneous surface characterized by a Dubinin-Astakhov adsorption energy distribution (AED) function. In particular, the Condensation Approximation (CA) was applied to obtain simple equations for the partial adsorption isotherms and phase diagrams in the system for which a separate AED was assumed for each component of the mixture. A few cases involving different relationships between the AEDs associated with the adsorbing components were discussed. Additionally, the results of the proposed theory were compared with exact numerical solutions obtained using the Integral Equation method. From both simulations and numerical calculations, it follows that, in general, the CA is not appropriate for the prediction of binary adsorption equilibria when the individual AEDs are of an entirely different shape. On the other hand, when the AEDs were microscopically correlated, i.e. when the adsorption energy of one component on every site was shifted by a constant value compared to that of the other, the phase diagrams obtained were found to be in a very good agreement with their simulated counterparts.


2020 ◽  
Author(s):  
Shalini Singh ◽  
Jari Leemans ◽  
Francesco Zaccharia ◽  
Ivan Infante ◽  
Zeger Hens

2008 ◽  
Author(s):  
Anoop Gupta ◽  
Folarin Erogbogbo ◽  
Mark T. Swihart ◽  
Hartmut Wiggers

1996 ◽  
Vol 444 ◽  
Author(s):  
Maarten P. de Boer ◽  
Terry A. Michalske

AbstractWe have measured autoadhesion (e.g. stiction) of individual polysilicon beams by interferometric optical microscopy. Untreated cantilever beams were dried from water in air, while treated beams were coated with a hydrophobic molecular coating of octadecyltrichlorosilane (ODTS). Adhesion values obtained for beams adhered to the substrate over a long length (large d) are independent of beam length with values of 16.7 and 4.4 mJ/m2 for untreated and treated samples respectively. These values can be understood in terms of differences in surface chemistry and polysilicon roughness. Using the shortest length beam which remains attached to the substrate, adhesion values were 280 and 16 mJ/m2 respectively. These higher values may be a result of capillarity effects. We recommend that measurements be made on beams in which d is large, in contrast to the current practice of noting the shortest beam adhered.


Sign in / Sign up

Export Citation Format

Share Document