Photoluminescence behavior of silicon nanocrystals: Role of surface chemistry and size

2008 ◽  
Author(s):  
Anoop Gupta ◽  
Folarin Erogbogbo ◽  
Mark T. Swihart ◽  
Hartmut Wiggers
2007 ◽  
Vol 204 (5) ◽  
pp. 1491-1496 ◽  
Author(s):  
A. Sa'ar ◽  
M. Dovrat ◽  
J. Jedrzejewsky ◽  
I. Popov ◽  
I. Balberg

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1026
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
M. Selim Ünlü

The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules’ functionalities is critically analyzed.


ACS Nano ◽  
2017 ◽  
Vol 11 (5) ◽  
pp. 4453-4462 ◽  
Author(s):  
Seokhyoung Kim ◽  
David J. Hill ◽  
Christopher W. Pinion ◽  
Joseph D. Christesen ◽  
James R. McBride ◽  
...  

2011 ◽  
Vol 1354 ◽  
Author(s):  
Jean Paul Allain ◽  
Osman El-Atwani ◽  
Alex Cimaroli ◽  
Daniel L. Rokusek ◽  
Sami Ortoleva ◽  
...  

ABSTRACTIon-beam sputtering (IBS) has been studied as a means for scalable, mask-less nanopatterning of surfaces. Patterning at the nanoscale has been achieved for numerous types of materials including: semiconductors, metals and insulators. Although much work has been focused on tailoring nanopatterning by systematic ion-beam parameter manipulation, limited work has addressed elucidating on the underlying mechanisms for self-organization of multi-component surfaces. In particular there has been little attention to correlate the surface chemistry variation during ion irradiation with the evolution of surface morphology and nanoscale self-organization. Moreover the role of surface impurities on patterning is not well known and characterization during the time-scale of modification remains challenging. This work summarizes an in-situ approach to characterize the evolution of surface chemistry during irradiation and its correlation to surface nanopatterning for a variety of multi-components surfaces. The work highlights the importance and role of surface impurities in nanopatterning of a surface during low-energy ion irradiation. In particular, it shows the importance of irradiation-driven mechanisms in GaSb(100) nanopatterning by low-energy ions and how the study of these systems can be impacted by oxide formation.


2017 ◽  
Vol 39 (S4) ◽  
pp. E2116-E2124 ◽  
Author(s):  
Gloria Ramos-Fernandez ◽  
María Muñoz ◽  
Juan C. García-Quesada ◽  
Iluminada Rodriguez-Pastor ◽  
Ignacio Martin-Gullon

1997 ◽  
Vol 144 (1) ◽  
pp. 384-389 ◽  
Author(s):  
Q.‐Y. Tong ◽  
T.‐H. Lee ◽  
U. Gösele ◽  
M. Reiche ◽  
J. Ramm ◽  
...  

2004 ◽  
Vol 19 (9) ◽  
pp. 2699-2702 ◽  
Author(s):  
C.S. Zhang ◽  
H.B Xiao ◽  
Y.J. Wang ◽  
Z.J. Chen ◽  
X.L. Cheng ◽  
...  

Erbium and silicon were dual implanted into thermally grown SiO2 film on Si (110) substrates, followed by thermal treatment at 700–1200 °C for 30 min. The microstructure was studied by transmission electron microscope and x-ray diffraction. When the implanted films were annealed at T > 900 °C, the silicon nanocrystals (nc-Si) enwrapped by amorphous silicon (a-Si) could be observed. The thermal quenching behavior at λ = 1.535 μm and its relation with the annealling temperature were also investigated. With increasing annealing temperature, the portion of a-Si and the thermal quenching both decreased. Efficient luminescence from Er ions and weak intensity thermal quenching were obtained from the sample annealed at 1100 °C. The role of a-Si in non-radiative processes at T > 100 K is discussed.


Sign in / Sign up

Export Citation Format

Share Document