scholarly journals Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa

2000 ◽  
Vol 352 (3) ◽  
pp. 675 ◽  
Author(s):  
Roberto VELASCO-GARCÍA ◽  
Lilian GONZÁLEZ-SEGURA ◽  
Rosario A. MUÑOZ-CLARES
2000 ◽  
Vol 352 (3) ◽  
pp. 675-683 ◽  
Author(s):  
Roberto VELASCO-GARCÍA ◽  
Lilian GONZÁLEZ-SEGURA ◽  
Rosario A. MUÑOZ-CLARES

Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)+ to NADP(H). In Pseudomonas aeruginosa this reaction is a compulsory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. The kinetic mechanisms of the NAD+- and NADP+-dependent reactions were examined by steady-state kinetic methods and by dinucleotide binding experiments. The double-reciprocal patterns obtained for initial velocity with NAD(P)+ and for product and dead-end inhibition establish that both mechanisms are steady-state random. However, quantitative analysis of the inhibitions, and comparison with binding data, suggest a preferred route of addition of substrates and release of products in which NAD(P)+ binds first and NAD(P)H leaves last, particularly in the NADP+-dependent reaction. Abortive binding of the dinucleotides, or their analogue ADP, in the betaine aldehyde site was inferred from total substrate inhibition by the dinucleotides, and parabolic inhibition by NADH and ADP. A weak partial uncompetitive substrate inhibition by the aldehyde was observed only in the NADP+-dependent reaction. The kinetics of P. aeruginosa BADH is very similar to that of glucose-6-phosphate dehydrogenase, suggesting that both enzymes fulfil a similar amphibolic metabolic role when the bacteria grow in choline and when they grow in glucose.


Biochimie ◽  
2005 ◽  
Vol 87 (12) ◽  
pp. 1056-1064 ◽  
Author(s):  
Lilian González-Segura ◽  
Roberto Velasco-García ◽  
Enrique Rudiño-Piñera ◽  
Carlos Mújica-Jiménez ◽  
Rosario A. Muñoz-Clares

2005 ◽  
Vol 185 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Roberto Velasco-García ◽  
Miguel Angel Villalobos ◽  
Miguel A. Ramírez-Romero ◽  
Carlos Mújica-Jiménez ◽  
Gabriel Iturriaga ◽  
...  

2006 ◽  
Vol 188 (3) ◽  
pp. 1155-1158 ◽  
Author(s):  
Sarah H. Lawrence ◽  
James G. Ferry

ABSTRACT Phosphotransacetylase (EC 2.3.1.8) catalyzes the reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. A steady-state kinetic analysis of the phosphotransacetylase from Methanosarcina thermophila indicated that there is a ternary complex kinetic mechanism rather than a ping-pong kinetic mechanism. Additionally, inhibition patterns of products and a nonreactive substrate analog suggested that the substrates bind to the enzyme in a random order. Dynamic light scattering revealed that the enzyme is dimeric in solution.


2001 ◽  
Vol 390 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Jovita Marcinkeviciene ◽  
Wenjun Jiang ◽  
Lisa M Kopcho ◽  
Gregory Locke ◽  
Ying Luo ◽  
...  

Biochemistry ◽  
2010 ◽  
Vol 49 (44) ◽  
pp. 9542-9550 ◽  
Author(s):  
Hongling Yuan ◽  
Guoxing Fu ◽  
Phillip T. Brooks ◽  
Irene Weber ◽  
Giovanni Gadda

Sign in / Sign up

Export Citation Format

Share Document