scholarly journals The effect of preganglionic stimulation on the incorporation of l-[U-14C]valine into the protein of the superior cervical ganglion of the guinea pig

1970 ◽  
Vol 118 (5) ◽  
pp. 813-818 ◽  
Author(s):  
P. Banks

1. Superior cervical ganglia from the guinea pig carry out an energy-dependent incorporation of l-[14C]valine into protein in vitro. 2. Stimulation of the preganglionic nerve at a physiological frequency for more than a few minutes decreases the ability of the ganglia to incorporate labelled valine into protein.

1993 ◽  
Vol 113 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Tian-Ying Ren ◽  
E. Laurikainen ◽  
W. S. Quirk ◽  
J. M. Miller ◽  
A. L. Nuttall

1975 ◽  
Vol 53 (3) ◽  
pp. 451-457 ◽  
Author(s):  
J. C. Khatter ◽  
A. J. D. Friesen

Preganglionic stimulation of the cat's superior cervical ganglion in the presence of hemicholinium-3 (HC-3) produced the expected depletion of acetylcholine (ACh) stores, but failed to cause a corresponding reduction in the choline content. These results suggest that either HC-3 possesses an intracellular site of action or that in lower doses it selectively inhibits a specialized choline transport system in cholinergic nerves. At a dose of 2 mg/kg, HC-3 probably blocked ACh synthesis completely in ganglia stimulated at 20 Hz. Under these conditions, there was a rapid depletion of ACh to about 50% of control levels during the first 5 min of stimulation and thereafter the rate of decline in ACh levels proceeded at a much slower pace. Since the 2 mg/kg dose of HC-3 did not raise plasma choline concentrations, it may be assumed that non-specialized choline transport systems in other tissues were not significantly inhibited by this dose of HC-3. However, when the dose of HC-3 was increased to 4 mg/kg, plasma choline levels increased by 58%.


Medicina ◽  
2007 ◽  
Vol 43 (5) ◽  
pp. 390 ◽  
Author(s):  
Gineta Liutkienė ◽  
Rimvydas Stropus ◽  
Anita Dabužinskienė ◽  
Mara Pilmane

Objective. The sympathetic nervous system participates in the modulation of cerebrovascular autoregulation. The most important source of sympathetic innervation of the cerebral arteries is the superior cervical ganglion. The aim of this study was to investigate signs of the neurodegenerative alteration in the sympathetic ganglia including the evaluation of apoptosis of neuronal and satellite cells in the human superior cervical ganglion after ischemic stroke, because so far alterations in human sympathetic ganglia related to the injury to peripheral tissue have not been enough analyzed. Materials and methods. We investigated human superior cervical ganglia from eight patients who died of ischemic stroke and from seven control subjects. Neurohistological examination of sympathetic ganglia was performed on 5 μm paraffin sections stained with cresyl violet. TUNEL method was applied to assess apoptotic cells of sympathetic ganglia. Results. The present investigation showed that: (1) signs of neurodegenerative alteration (darkly stained and deformed neurons with vacuoles, lymphocytic infiltrates, gliocyte proliferation) were markedly expressed in the ganglia of stroke patients; (2) apoptotic neuronal and glial cell death was observed in the human superior cervical ganglia of the control and stroke groups; (3) heterogenic distribution of apoptotic neurons and glial cells as well as individual variations in both groups were identified; (4) higher apoptotic index of sympathetic neurons (89%) in the stroke group than in the control group was found. Conclusions. We associated these findings with retrograde reaction of the neuronal cell body to axonal damage, which occurs in the ischemic focus of blood vessels innervated by superior cervical ganglion.


Sign in / Sign up

Export Citation Format

Share Document