scholarly journals The metabolic interconversion of arecoline and arecoline 1-oxide in the rat

1971 ◽  
Vol 122 (4) ◽  
pp. 503-508 ◽  
Author(s):  
R. Nery

1. Tritiation of arecoline hydrochloride by catalytic exchange in aqueous media (done by The Radiochemical Centre) gave arecaidine hydrochloride of high specific radioactivity; this on treatment with diazomethane gave [3H]arecoline, which was oxidized with peroxyacetic acid to [3H]arecoline 1-oxide. 2. Arecoline 1-oxide gave arecaidine 1-oxide on acid hydrolysis and 1,2-dihydro-1-methylnicotinic acid methyl ester on thermal decomposition. 3. [3H]Arecoline hydrochloride was metabolized in the rat into the 3H-labelled derivatives of arecoline 1-oxide, arecaidine 1-oxide, arecaidine, N-acetyl-S-(3-carboxy-1-methylpiperid-4-yl)-l-cysteine and an unidentified metabolite; some unchanged arecoline was also excreted. [3H]Arecoline 1-oxide gave the same metabolities, but in different amounts. 4. The possible relevance of these findings to betel-nut carcinogenesis is discussed.

Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 450 ◽  
Author(s):  
Lamiaa A. Shaala ◽  
Diaa T. A. Youssef ◽  
Torki A. Alzughaibi ◽  
Sameh S. Elhady

The actinomycete strain Streptomyces coelicolor LY001 was purified from the sponge Callyspongia siphonella. Fractionation of the antimicrobial extract of the culture of the actinomycete afforded three new natural chlorinated derivatives of 3-phenylpropanoic acid, 3-(3,5-dichloro-4-hydroxyphenyl)propanoic acid (1), 3-(3,5-dichloro-4-hydroxyphenyl)propanoic acid methyl ester (2), and 3-(3-chloro-4-hydroxyphenyl)propanoic acid (3), together with 3-phenylpropanoic acid (4), E-cinnamic acid (5), and the diketopiperazine alkaloids cyclo(l-Phe-trans-4-OH-l-Pro) (6) and cyclo(l-Phe-cis-4-OH-d-Pro) (7) were isolated. Interpretation of nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HRESIMS) data of 1–7 supported their assignments. Compounds 1–3 are first candidates of the natural chlorinated phenylpropanoic acid derivatives. The production of the chlorinated derivatives of 3-phenylpropionic acid (1–3) by S. coelicolor provides insight into the biosynthetic capabilities of the marine-derived actinomycetes. Compounds 1–3 demonstrated significant and selective activities towards Escherichia. coli and Staphylococcus aureus, while Candida albicans displayed more sensitivity towards compounds 6 and 7, suggesting a selectivity effect of these compounds against C. albicans.


1978 ◽  
Vol 33 (7-8) ◽  
pp. 465-471
Author(s):  
Franz Daliacker ◽  
Volker Mues ◽  
In-O Kim

Abstract We describe the possibilities of formation and preparation of the “natural” 1,3-benzodioxolecarboxylic acids 1, 2, 4, 6 b, and 7, already mentioned in literature. Myristic acid (3e) was prepared in good yield from 3-methoxy-4,5-dihydroxy-benzoic acid ester (3c) , which could be easily made from 3-methoxy-2,3-carbonyldioxy-benzoic acid methylester (3b). Myristicic acid methylester (3d) could be subjected to methylation and hydrolysis leading to 3e without any difficulties. 4.6-dimethoxy-1,3-benzodioxole-5-carboxylic acid (5b) was prepared in good yields by oxidation of 4,6-dimethoxy-1,3-benzodioxole-5-aldehyde (5a). 5.7-dimethoxy-1,3-benzodioxole-carboxylic acid (13f), one of the “unnatural” 1,3-benzodioxolecarboxylic acids, derivatives of o-ipiperonylic acid (8), was prepared from 5-amino-7-methoxy-1,3- benzodioxole-4carboxylic acid methyl ester (13b) by diazotisation, elimination of nitrogen, methylation, and hydrolysis. A comparison of our measured pkA-values showed the strongest acidity belonging to 5,6-dimethoxy-1,3-benzodioxole-4-carbocylic acid (11).


2018 ◽  
Vol 54 (12) ◽  
pp. 1868-1870
Author(s):  
A. D. Zorina ◽  
V. L. Polozova ◽  
S. A. Marchenko ◽  
S. I. Selivanov ◽  
R. E. Trifonov

1998 ◽  
Vol 45 (2) ◽  
pp. 509-521
Author(s):  
T Pacuszka ◽  
M Panasiewicz

Photoreactive gangliosides of high specific radioactivity may prove useful for studies on glycosphingolipid functions. We prepared 4-azidosalicylic acid (ASA) acylated derivatives of GM3, GD3, GM1, and FucGM1 gangliosides (gangliosides-ASA). Gangliosides-ASA were characterized by their TLC mobility, UV spectra, carbohydrate composition, and digestion with leech endoceramidase. After radioiodination to about 200 Ci/mmole gangliosides-ASA were used for photochemical labeling of human erythrocytes. Radioiodinated gangliosides-ASA were incorporated into erythrocytes in a time and concentration dependent manner, the kinetics and extent of incorporation being similar for all the gangliosides-ASA used. Radioiodinated gangliosides-ASA incorporated into erythrocytes were resistant to trypsin digestion while treatment with 1% BSA removed about 90% of the label. Incubation with cholera toxin protected radioiodinated GM1-ASA and, to a lesser extent, FucGM1-ASA but not GM3-ASA and GD3-ASA, against removal with BSA. After photolysis about 40-50% of radioactivity was firmly bound to erythrocyte lipids and proteins. The ratio of lipid- to protein-bound radioactivity ranged from 2.2:1 to 3.2:1. Photolabeled proteins were analyzed by SDS/PAGE followed by autoradiography. Band 3 was the most extensively photolabeled protein with all the radioiodinated gangliosides-ASA used. DIDS, an inhibitor of band 3 protein activity, caused reduction in photolabeling of this protein by about 20%.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Galina Pazynina ◽  
Vitaly Nasonov ◽  
Ivan Belyanchikov ◽  
Reinchard Brossmer ◽  
Maxim Maisel ◽  
...  

Earlier we reported a convenient and efficient method of preparing α2-6 sialooligosaccharides in conditions of Koenigs-Knorr reaction. The use of Ag2CO3 allowed carrying out α2-6 sialylation of galacto-4,6-diol of mono- and disaccharides with chloride of acetylated N-acetylneuraminic acid methyl ester as glycosyl donor. In this study we applied this approach to other derivatives of neuraminic acid, namely, Neu5Gc, 9-deoxy-9-NAc-Neu5Ac, Neu5Acα2-8Neu5Ac, and Neu5Acα2-8Neu5Acα2-8Neu5Ac as glycosyl donors; eight compounds were synthesized: Neu5Gcα-O(CH2)3NH2 (8), Neu5Gcα2-6Galβ1-4GlcNAcβ-O(CH2)3NH2 (10), 9-deoxy-9-NAc-Neu5Ac-O(CH2)3NH2 (15), 9-deoxy-9-NAc-Neu5Acα2-6Galβ1-4GlcNAcβ-O(CH2)3NH2 (17), Neu5Acα2-8Neu5Acα-O(CH2)3NH2(23) Neu5Acα2-8Neu5Acα-OCH3 (24), Neu5Acα2-8Neu5Acα-OCH2(p-C6H4)NHCOCH2NH2 (25), and Neu5Acα2-8Neu5Acα2-8Neu5Acα-O(CH2)3NH2 (32). These sialosides were used for characterization of siglecs and other carbohydrate-binding proteins.


Sign in / Sign up

Export Citation Format

Share Document