metabolic interconversion
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 8 ◽  
Author(s):  
David S. Seigler ◽  
J. Brent Friesen ◽  
Jonathan Bisson ◽  
James G. Graham ◽  
Ana Bedran-Russo ◽  
...  

Flavonoids are a vast group of metabolites that are essential for vascular plant physiology and, thus, occur ubiquitously in plant-based/-derived foods. The solitary designation of thousands of known flavonoids hides the fact that their metabolomes are structurally highly diverse, consist of disparate subgroups, yet undergo a certain degree of metabolic interconversion. Unsurprisingly, flavonoids have been an important theme in nutrition research. Already in the 1930s, it was discovered that the ability of synthetic Vitamin C to treat scurvy was inferior to that of plant extracts containing Vitamin C. Subsequent experimental evidence led to the proposal of Vitamin P (permeability) as an essential phytochemical nutrient. However, attempts to isolate and characterize Vitamin P gave confusing and sometimes irreproducible results, which today can be interpreted as rooted in the unrecognized (residual) complexity of the intervention materials. Over the years, primarily flavonoids (and some coumarins) were known as having Vitamin P-like activity. More recently, in a NAPRALERT meta-analysis, essentially all of these Vitamin P candidates were identified as IMPs (Invalid/Improbable/Interfering Metabolic Panaceas). While the historic inability to define a single compound and specific mode of action led to general skepticism about the Vitamin P proposition for “bioflavonoids,” the more logical conclusion is that several abundant and metabolically labile plant constituents fill this essential role in human nutrition at the interface of vitamins, cofactors, and micronutrients. Reviewing 100+ years of the multilingual Vitamin P and C literature provides the rationales for this conclusion and new perspectives for future research.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Brent W. Anderson ◽  
Danny K. Fung ◽  
Jue D. Wang

Bacterial stress-signaling alarmones are important components of a protective network against diverse stresses such as nutrient starvation and antibiotic assault. pppGpp and ppGpp, collectively (p)ppGpp, have well-documented regulatory roles in gene expression and protein translation. Recent work has highlighted another key function of (p)ppGpp: inducing rapid and coordinated changes in cellular metabolism by regulating enzymatic activities, especially those involved in purine nucleotide synthesis. Failure of metabolic regulation by (p)ppGpp results in the loss of coordination between metabolic and macromolecular processes, leading to cellular toxicity. In this review, we document how (p)ppGpp and newly characterized nucleotides pGpp and (p)ppApp directly regulate these enzymatic targets for metabolic remodeling. We examine targets’ common determinants for alarmone interaction as well as their evolutionary diversification. We highlight classical and emerging themes in nucleotide signaling, including oligomerization and allostery along with metabolic interconversion and crosstalk, illustrating how they allow optimized bacterial adaptation to their environmental niches. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2014 ◽  
Vol 70 (10) ◽  
pp. 1368-1371
Author(s):  
Diem-Quynh Nguyen ◽  
Ho-Phuong-Thuy Ngo ◽  
Yeh-Jin Ahn ◽  
Sang Hee Lee ◽  
Lin-Woo Kang

Multidrug-resistantAcinetobacter baumannii(Ab) has emerged as a leading nosocomial pathogen because of its resistance to most currently available antibiotics. Cystathionine β-lyase (CBL), a pyridoxal 5′-phosphate (PLP)-dependent enzyme, catalyzes the second step in the transsulfuration pathway, which is essential for the metabolic interconversion of the sulfur-containing amino acids homocysteine and methionine. The enzymes of the transsulfuration pathway are considered to be attractive drug targets owing to their specificity to microbes and plants. As a potential target for the development of novel antibacterial drugs, the AbCBL protein was expressed, purified and crystallized. An AbCBL crystal diffracted to 1.57 Å resolution and belonged to the trigonal space groupP3112, with unit-cell parametersa=b= 102.9,c= 136.5 Å. The asymmetric unit contained two monomers, with a correspondingVMof 2.3 Å3 Da−1and a solvent content of 46.9%.


1994 ◽  
Vol 36 (1) ◽  
pp. 10A-10A
Author(s):  
Virgilio P Carnielli ◽  
Katia Rossi ◽  
Tamara Badon ◽  
Barbara Gregori ◽  
Franco Zacchello

Sign in / Sign up

Export Citation Format

Share Document