dodecanoic acid
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 66)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 7 ◽  
Author(s):  
W. Wijanarko ◽  
H. Khanmohammadi ◽  
N. Espallargas

Water-based lubricants have the potential to become the largest environmentally friendly lubricants in applications such as electric vehicles and the newly emerging green technologies of the future due to their inherent low viscosity and cooling properties. In order to be environmentally acceptable (EAL), both base lubricants and additives should comply with biodegradability, non-toxicity, and non-bioaccumulation requirements. Additives for water-based lubricants should ideally be polar and soluble in water and, at the same time, should not increase the electrical conductivity to critical levels for corrosion. However, most additives used in synthetic or mineral oils are non-polar. Ionic liquids have recently gained attention as lubricant additives due to their high polarity, making them highly surface-active (i.e. high tendency to adsorb on metal surfaces). However, they are seen as highly corrosive for many metal alloys. In this work, a water-glycol lubricant containing two different ionic liquids has been investigated as a potential green lubricant for a bearing steel AISI 52100 with accurate control on electrical conductivity and pH. The selected ionic liquids were tributylmethylphosphonium dimethylphosphate (PP) and 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMP). The tribological behaviour of the ionic liquids was compared with a well-known organic friction modifier, dodecanoic acid (C12). The ionic liquids showed lower friction and wear rate than the water-based lubricant alone. However, they showed higher friction than the lubricant formulated with C12, in which PP gave lower friction than BMP due to low pH. A detailed subsurface analysis of the wear track using scanning-transmission electron microscopy (STEM) showed that a thick oxide tribofilm was built on the wear track for both lubricants formulated with ionic liquids due to high electrical conductivity. This tribofilm gave beneficial effect on wear. Although PP and BMP gave thicker tribofilms than C12, it was not durable, resulting in cracking and detachment.


Author(s):  
Hyuna Park ◽  
Doyeong Bak ◽  
Wooyoung Jeon ◽  
Minjung Jang ◽  
Jung-Oh Ahn ◽  
...  

α,ω-Dodecanediol is a versatile material that has been widely used not only as an adhesive and crosslinking reagent, but also as a building block in the pharmaceutical and polymer industries. The biosynthesis of α,ω-dodecanediol from fatty derivatives, such as dodecane and dodecanol, requires an ω-specific hydroxylation step using monooxygenase enzymes. An issue with the whole-cell biotransformation of 1-dodecanol using cytochrome P450 monooxygenase (CYP) with ω-specific hydroxylation activity was the low conversion and production of the over-oxidized product of dodecanoic acid. In this study, CYP153A33 from Marinobacter aquaeolei was engineered to obtain higher ω-specific hydroxylation activity through site-directed mutagenesis. The target residue was mutated to increase flux toward α,ω-dodecanediol synthesis, while reducing the generation of the overoxidation product of dodecanoic acid and α,ω-dodecanedioic acid. Among the evaluated variants, CYP153A33 P136A showed a significant increase in 1-dodecanol conversion, i.e., 71.2% (7.12 mM from 10 mM 1-dodecanol), with an increased hydroxylation to over-oxidation activity ratio, i.e., 32.4. Finally, the applicability of this engineered enzyme for ω-specific hydroxylation against several 1-alkanols, i.e., from C6 to C16, was investigated and discussed based on the structure-activity relationship.


Author(s):  
Radhika D. Mhatre ◽  
Sucheta P. Dandekar

Background: Membrane lipids and proteins play a significant part in imparting membrane its rheological properties. These parameters are altered in diseased states. Exploring the conformational changes in renal disorders can widen our understanding of its impact on the circulatory system. This could lead to a new diagnostic parameter to study the progress of a disease.Methods: 120 blood samples collected from 30 kidney donors, 30 stage 3-4 Chronic kidney disease (CKD) patients (group 1) and 30 stage 5 CKD patients on dialysis (pre and post dialysis) (group 2) were lysed and washed to obtain erythrocyte ghost membranes. The proteins extracted from these membranes were estimated colorimetrically using Micro BCA kit. Phospholipids were separated and quantified using HPTLC. Fatty acids and cholesterol were analysed using GCMS.Results: The erythrocyte membrane protein profile showed lower values in group 2 participants than group 1 participants, but this difference was not significant. Distinct decreases in percentages of palmitic acid, myristic acid, stearic acid, dodecanoic acid, cholesterol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine were observed in both groups, with the lowest values in patients undergoing dialysis. Sphingomyelin and linoleic acid did not show any such trend across groups.Conclusions: The data is suggestive of an altered membrane structure in participants undergoing dialysis patients than the control group. This could be because of uremic toxins in the circulatory system affecting the membrane lipids. Decreased levels of essential phospholipids can impact the functions and lifespan of the erythrocytes. This could be a reason behind anaemia seen in most patients with CKD.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7618
Author(s):  
Thomas Bickel Bickel Haase ◽  
Ute Schweiggert-Weisz ◽  
Eva Ortner ◽  
Holger Zorn ◽  
Susanne Naumann

Cocoa pulp occurs as a by-product of cocoa bean production and can be repurposed to different food applications, such as jams, fruit preparations and beverages, improving the sustainability of cocoa production, as well as the livelihoods of cocoa farmers. In this work, aroma-active compounds of fresh cocoa fruit pulps from different origins were investigated by applying aroma extract dilution analyses in combination with gas chromatography-mass spectrometry/olfactometry for identification. In total, 65 aroma-active compounds were determined in four different pulps originating from Indonesia, Vietnam, Cameroon, and Nicaragua. Vietnamese pulp showed the highest number of aroma-active regions, while Cameroonian pulp accounted for the lowest. Moreover, Cameroonian cocoa pulp showed the lowest FD factors. Overall, the odorants with the highest FD factors were trans-4,5-epoxy-(E)-decenal, 2- and 3-methylbutanoic acid, 3-(methylthio)propanal, 2-isobutyl-3-methoxypyrazine, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 4-vinyl-2-methoxyphenol, δ-decalactone, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, dodecanoic acid, and linalool. This study provides insights into the aroma composition of fresh cocoa pulp from different origins for future food applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260281
Author(s):  
Madhuri Bharathithasan ◽  
Darvin R. Ravindran ◽  
Dinesh Rajendran ◽  
Sim Ka Chun ◽  
S. A. Abbas ◽  
...  

Background There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae). Methods The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus. Results The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid <n->, and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents. Conclusions Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.


Friction ◽  
2021 ◽  
Author(s):  
Wahyu Wijanarko ◽  
Hamid Khanmohammadi ◽  
Nuria Espallargas

AbstractIonic liquids have been widely discussed as potential lubricants, however, their properties make them also very good potential candidates as lubricant additives (e.g., friction modifiers and anti-wear). In this work, the tribological study of two ionic liquids (tributylmethylphosphonium dimethylphosphate (PP), and 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMP)) as lubricant additives has been performed on stainless steel (AISI 316L) exposed to polar (water-glycol) and non-polar (polyalphaolefin) based lubricants under boundary lubricating conditions. The performance of these ionic liquids as lubricant additives has been compared to a classical organic friction modifier (dodecanoic acid (C12)). The water-glycol lubricant formulated with the two ionic liquids showed friction values higher than the same base lubricant formulated with dodecanoic acid, however, opposite results were observed for polyalphaolefin (PAO). A detailed surface chemical analysis using X-ray photoelectron spectroscopy (XPS) revealed differences in the passive/tribofilm thickness and chemical composition of the stainless steel surface tested in all lubricants. In the case of the polar lubricant additivated with ionic liquids, the tribochemical reaction accompanied by a tribocorrosion process led to the formation of an unstable passive/tribofilm resulting in high friction and wear. However, in the absence of tribocorrosion process (polyalphaolefin base lubricant), the tribochemical reaction led to the formation of a stable passive/tribofilm resulting in low friction and wear. A detailed surface and subsurface investigation of the microstructure using scanning electron microscopy equipped with a focused ion beam (SEM-FIB) showed that high wear rates resulted in thicker recrystallization region under the wear track surface. Among all lubricant additives tested in this work, BMP in non-polar lubricant media showed the best tribological performance.


2021 ◽  
Vol 25 (7) ◽  
pp. 1115-1120
Author(s):  
O.U. Akoh ◽  
O.M. Mac-Kalunta

This study was carried out to identify the bioactive constituents of the tuber peels of Icacina trichanthalinna of the Icacinales family. This plant is basically selected due to its widespread use in herbal treatment. Nine compounds were identified in the chloroform extract of the tuber peel. Undecane (43.254%),2-hexanone (23.299%), Dodecanoic acid ethyl ester (6.244%) and 9-octadecynoic acid (5.915%) appeared to be the most prevailing compounds and they are known to possess antibacterial, antiviral, antioxidant, antimycobacterial, hypercholesterolemic activities. Also identified was triarachine which has been reported to have some biological activity.


Author(s):  
Pradeep P. Thorat Nikhil D. Solanke ◽  
Jayashri D. Ughade

The bioactive components of lemongrass powder have been evaluated using GC-MS. The GC-MS analysis was performed on GC-MS comprising an automatic liquid sampler and agilent gas chromatograph interfaced to mass spectrometer (GC-MS). Interpretation of the mass spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST). The compound bioactivity prediction is based on Dr. Duke’s phytochemical and ethnobotanical Database. GC/MS analysis of methanolic extract of lemongrass leaves revealed the existence of Pentane, 2,4-Dimethyl, Dodecanoic acid tert-butyl ester, 2,6 Bis (1,1-dimethylethyl)-4-[(4-chloro-6-(3,5, bis (1,1-dimethylethyl)-4- hydroxyanilino)-1,3,5-triazin-2-yl)amino]phenol and 3-Formyl-4,5-dimethyl-pyrrole. The presence of these compounds in the plant extract may at least be responsible for the pharmacological properties of Cymbopogon citratus and thus recommended as plant of phytopharmaceutical importance.


Sign in / Sign up

Export Citation Format

Share Document