scholarly journals Alkaline ribonuclease and phosphodiesterase activity in rat liver plasma membranes

1973 ◽  
Vol 132 (3) ◽  
pp. 449-458 ◽  
Author(s):  
Terence D. Prospero ◽  
Malcolm L. E. Burge ◽  
Kenneth A. Norris ◽  
Richard H. Hinton ◽  
Eric Reid

The ribonuclease and phosphodiesterase activities of rat liver plasma membranes, purified from the crude nuclear fraction by centrifugation in an A-XII zonal rotor and flotation, were examined and compared. The plasma membrane is responsible for between 65 and 90% of the phosphodiesterase activity of the cell and between 25 and 30% of the particulate ribonuclease activity measured at pH8.7 in the presence of 7.5mm-MgCl2. Both enzymes were most active between pH8.5 and 8.9. Close to the pH optimum, both enzymes were more active in Tris buffer than in Bicine or glycine buffer. Both plasma-membrane phosphodiesterase and ribonuclease were strongly activated by Mg2+, there being at least a 12-fold difference between the activity in the presence of Mg2+ and of EDTA. There is, however, a difference in the response of the enzymes to Mg2+ and EDTA in that the phosphodiesterase is fully activated by 1.0mm-MgCl2 and fully inhibited by 1.0mm-EDTA, whereas the ribonuclease requires 7.5mm-MgCl2 for full activation and 5mm-EDTA for full inhibition. Density-gradient centrifugation has indicated that on solubilization in Triton X-100 most of the ribonuclease activity is released into a small fragment of the same size as that containing the phosphodiesterase activity. The relationship between the two activities is discussed in view of these results.

1970 ◽  
Vol 47 (3) ◽  
pp. 604-618 ◽  
Author(s):  
Oscar Touster ◽  
N. N. Aronson ◽  
John T. Dulaney ◽  
Herman Hendrickson

Nucleotide pyrophosphatase and phosphodiesterase I of rat liver have been found to be localized primarily in cell particulates highly enriched with respect to the most commonly accepted plasma membrane marker, 5'-nucleotidase, and therefore should themselves be assigned a plasma membrane localization. The observation that plasma membranes sediment in isotonic sucrose with both nuclear and microsomal fractions was exploited to obtain plasma membrane preparations from each fraction. Both preparations are similar in chemical and enzymic composition. Moreover, the preparative method developed in this study appears to give the best combination of yield, purity, and reproducibility available. The question of the possible identity of nucleotide pyrophosphatase and phosphodiesterase I is considered, and evidence is presented suggesting that these activities may be manifestations of the same enzyme.


1985 ◽  
Vol 225 (1) ◽  
pp. 143-147 ◽  
Author(s):  
J Londesborough

Cyclic nucleotide phosphodiesterase activity in salt extracts of rat liver plasma membranes was progressively inactivated by treatment with the metal chelators 8-hydroxyquinoline and o-phenanthroline, but not the non-chelating m-phenanthroline isomer. Activity at 20 microM-cyclic AMP was lost more slowly than activity at 0.4 microM-cyclic AMP. The activity of treated preparations was partially restored by incubation with Zn2+ or Mn2+ ions (in the presence of 1 mM-MgCl2) but not with Ca2+, Cd2+, Co2+, Cu2+ or Fe2+ ions, nor by MgCl2 alone. The results suggest the presence in the membrane extracts of a cyclic AMP phosphodiesterase containing tightly bound metal, possibly Zn or Mn, that affects the enzyme's affinity for cyclic AMP.


1995 ◽  
Vol 311 (1) ◽  
pp. 139-146 ◽  
Author(s):  
P De Ceuster ◽  
G P Mannaerts ◽  
P P Van Veldhoven

One of the primary products of [4,5-3H]sphinganine phosphate, added to fibroblast cultures, is sphinganine [Van Veldhoven and Mannaerts (1994) Biochem. J. 299, 597-601], implicating the physiological action of (a) hitherto unknown phosphatase(s). We have now further characterized this activity in rat liver. In homogenates, the dephosphorylation appeared to be catalysed by multiple enzymes. A low-affinity system was active at acidic pH, whereas at physiological pH values hydrolysis was carried out by a high-affinity enzyme. The latter was sensitive to Zn2+ and detergents and possessed a pH optimum of 7.5. Upon cell fractionation the major portion of the high-affinity activity was recovered in the nuclear and microsomal fractions. Further separation of the microsomal fraction showed an association predominantly with vesicles derived from the plasma membrane. Likewise, when plasma membranes were prepared from the nuclear fraction, the high-affinity phosphatase co-purified with the plasma membrane markers. From the differential effects of bivalent cations, chelators, water-soluble and amphiphilic phosphate esters, detergents and other compounds, it could be concluded that the plasma membrane-associated sphinganine-phosphatase activity is not due to alkaline phosphatase, dolichol-phosphatase, the N-ethylmaleimide-insensitive phosphatidate phosphatase or ceramide-phosphatase. The dephosphorylation observed at acidic pH in homogenates appeared also to be enriched in purified plasma membranes and might represent a side-activity of ceramide-phosphatase. We speculate that the high-affinity phosphatase, which is especially active in neuronal tissues, plays a role in the attenuation of bioactive phosphorylated sphingoid bases such as sphingenine phosphate, and propose to name it sphingosine-phosphatase.


1979 ◽  
Vol 178 (1) ◽  
pp. 217-221 ◽  
Author(s):  
M D Houslay ◽  
R W Palmer

1. Synthetic lysophosphatidylcholines inhibit the glucagon-stimulated adenylate cyclase activity of rat liver plasma membranes at concentrations two to five times lower than those needed to inhibit the fluoride-stimulated activity. 2. Specific 125I-labelled glucagon binding to hormone receptors is inhibited at concentrations similar to those inhibiting the fluoride-stimulated activity. 3. At concentrations of lysophosphatidylcholines immediately below those causing inhibition, an activation of adenylate cyclase activity or hormone binding was observed. 4 These effects are essentially reversible. 5. We conclude that the increased sensitivity of glucagon-stimulated adenylate cyclase to inhibition may be due to the lysophosphatidylcholines interfering with the physical coupling between the hormone receptor and catalytic unit of adenylate cyclase. 6. We suggest that, in vivo, it is possible that lysophosphatidylcholines may modulate the activity of adenylate cyclase only when it is in the hormone-stimulated state.


1990 ◽  
Vol 272 (3) ◽  
pp. 749-753 ◽  
Author(s):  
K M Hurst ◽  
B P Hughes ◽  
G J Barritt

1. Guanosine 5′-[gamma-thio]triphosphate (GTP[S]) stimulated by 50% the rate of release of [3H]choline and [3H]phosphorylcholine in rat liver plasma membranes labelled with [3H]choline. About 70% of the radioactivity released in the presence of GTP[S] was [3H]choline and 30% was [3H]phosphorylcholine. 2. The hydrolysis of phosphorylcholine to choline and the conversion of choline to phosphorylcholine did not contribute to the formation of [3H]choline and [3H]phosphorylcholine respectively. 3. The release of [3H]choline from membranes was inhibited by low concentrations of SDS or Triton X-100. Considerably higher concentrations of the detergents were required to inhibit the release of [3H]phosphorylcholine. 4. Guanosine 5′-[beta gamma-imido]triphosphate and guanosine 5′-[alpha beta-methylene]triphosphate, but not adenosine 5′-[gamma-thio]-triphosphate, stimulated [3H]choline release to the same extent as did GTP[S]. The GTP[S]-stimulated [3H]choline release was inhibited by guanosine 5′-[beta-thio]diphosphate, GDP and GTP but not by GMP. 5. It is concluded that, in rat liver plasma membranes, (a) GTP[S]-stimulated hydrolysis of phosphatidylcholine is catalysed predominantly by phospholipase D with some contribution from phospholipase C, and (b) the stimulation of phosphatidylcholine hydrolysis by GTP[s] occurs via a GTP-binding regulatory protein.


Sign in / Sign up

Export Citation Format

Share Document