scholarly journals The specific radioactivity of the precursor pool for estimates of the rate of protein synthesis (Short Communication)

1973 ◽  
Vol 134 (4) ◽  
pp. 1127-1130 ◽  
Author(s):  
Edward B. Fern ◽  
Peter J. Garlick

Infusion of rats with [U-14C]glycine resulted in labelling of glycine and serine in tissue proteins. The pattern of labelling in protein more nearly resembled that of the free amino acids in the tissue than in the plasma.

1974 ◽  
Vol 140 (3) ◽  
pp. 539-545 ◽  
Author(s):  
Judith Airhart ◽  
Alda Vidrich ◽  
Edward A. Khairallah

The concept that a general intracellular pool serves as the sole precursor of amino acids for protein biosynthesis has been vigorously debated in recent years. To help resolve this controversy, we followed the distribution of intraperitoneally administered [3H]valine in the tRNA and the extracellular and intracellular compartments of rat liver. The specific radioactivity of the valine released from isolated tRNA was 2–3 times higher than that of intracellular valine, suggesting that the intracellular pool cannot be the sole precursor of amino acids used for charging tRNA. In addition, the specific radioactivity of the tRNA was only half that of the extracellular valine. Therefore it is unlikely that the valyl-tRNA is charged exclusively with amino acids derived from the extracellular pool. A model is proposed which stipulates that both extracellular and intracellular amino acids contribute to a restricted compartment that funnels amino acids towards protein biosynthesis.


2008 ◽  
Vol 56 (4) ◽  
pp. 511-514 ◽  
Author(s):  
Edward Onyango ◽  
Elikplimi Asem ◽  
Olayiwola Adeola

An investigation into the influence of phytates on the in situ absorption of amino acids (lysine, glutamate and leucine) and glucose from the intestinal lumen of 3-week-old chickens was carried out. Birds were anaesthetised and the intestines exteriorised. Uptake of 5 mM of each nutrient over a 4-min period was measured in the presence of four phytate concentrations (0, 50, 250 and 500 mM). Five birds were used for each nutrient at each concentration of phytate tested. Leucine uptake decreased linearly (P < 0.001) and that of glutamate showed a tendency to decrease (P = 0.055) as the phytate concentration increased. Absorption of lysine and glucose were unaffected by the presence of phytate. In conclusion, phytate in the small intestinal lumen exerted a depressive effect on the absorption of specific free amino acids from the lumen. Its depressive effect was greatest for leucine followed by glutamate, and phytate had little effect on the absorption of lysine.


1971 ◽  
Vol 124 (2) ◽  
pp. 385-392 ◽  
Author(s):  
R. W. Wannemacher ◽  
C. F. Wannemacher ◽  
M. B. Yatvin

Weanling (23-day-old) rats were fed on either a low-protein diet (6% casein) or a diet containing an adequate amount of protein (18% casein) for 28 days. Hepatic cells from animals fed on the deficient diet were characterized by markedly lower concentrations of protein and RNA in all cellular fractions as compared with cells from control rats. The bound rRNA fraction was decreased to the greatest degree, whereas the free ribosomal concentrations were only slightly less than in control animals. A good correlation was observed between the rate of hepatic protein synthesis in vivo and the cellular protein content of the liver. Rates of protein synthesis both in vivo and in vitro were directly correlated with the hepatic concentration of individual free amino acids that are essential for protein synthesis. The decreased protein-synthetic ability of the ribosomes from the liver of protein-deprived rats was related to a decrease in the number of active ribosomes and heavy polyribosomes. The lower ribosomal content of the hepatocytes was correlated with the decreased concentration of essential free amino acids. In the protein-deprived rats, the rate of accumulation of newly synthesized cytoplasmic rRNA was markedly decreased compared with control animals. From these results it was concluded that amino acids regulate protein synthesis (1) by affecting the number of ribosomes that actively synthesize protein and (2) by inhibiting the rate of synthesis of new ribosomes. Both of these processes may involve the synthesis of proteins with a rapid rate of turnover.


1983 ◽  
Vol 96 (6) ◽  
pp. 1586-1591 ◽  
Author(s):  
J M Besterman ◽  
J A Airhart ◽  
R B Low ◽  
D E Rannels

Intracellular degradation of exogenous (serum) proteins provides a source of amino acids for cellular protein synthesis. Pinocytosis serves as the mechanism for delivering exogenous protein to the lysosomes, the major site of intracellular degradation of exogenous protein. To determine whether the availability of extracellular free amino acids altered pinocytic function, we incubated monolayers of pulmonary alveolar macrophages with the fluid-phase marker, [14C]sucrose, and we dissected the pinocytic process by kinetic analysis. Additionally, intracellular degradation of endogenous and exogenous protein was monitored by measuring phenylalanine released from the cell monolayers in the presence of cycloheximide. Results revealed that in response to a subphysiological level of essential amino acids or to amino acid deprivation, (a) the rate of fluid-phase pinocytosis increased in such a manner as to preferentially increase both delivery to and size of an intracellular compartment believed to be the lysosomes, (b) the degradation of exogenously supplied albumin increased, and (c) the fraction of phenylalanine derived from degradation of exogenous albumin and reutilized for de novo protein synthesis increased. Thus, modulation of the pinosome-lysosome pathway may represent a homeostatic mechanism sensitive to the availability of extracellular free amino acids.


1975 ◽  
Vol 147 (3) ◽  
pp. 473-477 ◽  
Author(s):  
M Nwagwu

A procedure for preparing polyribosome aminoacyl-tRNA free from contamination by supernatant aminoacyl-tRNA and free amino acids is described. Important features of the procedure are the use of acidic buffers to help protect the amino acid-tRNA linkage and the inclusion of sodium dodecyl sulphate, to inhibit ribonuclease activity. The specific radioactivity of polyribosome aminoacyl-tRNA is high within 30s and reaches a maximum in 2 1/2 min, well ahead of polyribosome peptides which, as described by Herrmann et al. (1971), attain maximum specific radioactivity in about 10 min.


1972 ◽  
Vol 27 (2) ◽  
pp. 193-195 ◽  
Author(s):  
H. W. Küthe

Injection of tritiated phenylalanine or leucine in eggs shortly after deposition shows the importance and use of free amino acids during cleavage stages. First the activity is found homogeneously distributed in the yolk system and ooplasm. In late cleavage stages the amino acids are incorporated into the periplasm of the egg. These results lead to the conclusions, that there is a continuous transfer of material out of the yolk system into cortical regions during cleavage. Secondly the first new synthetized protein fractions are located in the cortical ooplasm.


1970 ◽  
Vol 48 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Y. Yoshino ◽  
K. A. C. Elliott

The time course of entry of radioactive carbon from intravenously administered [U-14C]-glucose into free amino acids in the brains of rats has been studied using an automatic amino acid analyzer coupled through a flow cell with a scintillation counter. Radioactivity appeared rapidly in alanine, aspartic acid, glutamic acid, glutamine, and γ-aminobutyric acid as previously shown, and in an unknown ninhydrin-positive substance present in very small amount. Urea, serine, and glycine became slightly radioactive. Four hours after giving the radioactive glucose, the specific activity in all soluble substances was low. In pentobarbital anesthesia, specific radioactivity was increased in alanine and decreased in γ-aminobutyric acid, aspartic and glutamic acids, and glutamine. A high proportion of radioactivity remained in glucose. Under hypoxia, alanine increased in amount but decreased in specific activity, and the specific activities of the other strongly labelled amino acids decreased. The proportion of the total radioactivity found in glucose and lactate increased. During picrotoxin and pentylenetetrazol convulsions, changes occurred which were similar to those under hypoxia. After aminooxyacetic acid administration, the well-known great increase in γ-aminobutyric acid level was found to be accompanied by a decrease in glutamate and also in aspartic acid and alanine, indicating inhibition of the three transaminases concerned. The previously observed brief rapid postmortem increase in the amount of γ-aminobutyric acid was confirmed; alanine also increased briefly but no other amino acid did so. The increased γ-aminobutyric acid had the same specific radioactivity as the original but the extra alanine was less radioactive than the original. When the γ-aminobutyric acid level had been increased by administration of aminooxyacetic acid, the rapid postmortem increase did not occur.


Sign in / Sign up

Export Citation Format

Share Document