Do Atlantic salmon (Salmo salar) utilize mixtures of free amino acids to the same extent as intact protein sources for muscle protein synthesis?

1994 ◽  
Vol 107 (1) ◽  
pp. 249-254 ◽  
Author(s):  
Marit Espe ◽  
Einar Lied
2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 673-673
Author(s):  
Michelle E G Weijzen ◽  
Rob JJ van Gassel ◽  
Imre W K Kouw ◽  
Stefan H M Gorissen ◽  
Marcel CG van de Poll ◽  
...  

Abstract Objectives The rate of protein digestion and amino acid absorption determines the postprandial rise in circulating amino acids and, as such, modulates postprandial muscle protein synthesis rates. This study compares protein digestion and amino acid absorption kinetics and the subsequent muscle protein synthetic response following ingestion of intact protein versus an equivalent amount of free, crystalline amino acids. Methods Twenty-four healthy, young subjects (age: 22 ± 3 y, BMI: 23 ± 2 kg·m−2, sex: 12 M/12F) ingested 30 g intrinsically L-[1–13C]-phenylalanine and L-[1–13C]-leucine labeled milk protein (PROT; n = 12) or an equivalent amount of free amino acids (AA; n = 12). In addition, subjects received primed continuous L-[ring-2H5]-phenylalanine, L-[ring-3,5–2H2]-tyrosine, and L-[1–13C]-leucine infusions. Blood samples and muscle biopsies were obtained frequently to assess protein digestion and amino acid absorption kinetics and subsequent muscle protein synthesis rates over a 6 h postprandial period. An unpaired t-test was used to compare overall exogenous phenylalanine release in plasma. For other parameters repeated measures ANOVA were applied to determine differences between groups over time (time as within, and group as between-subjects factor). Data are expressed as mean ± SD. Results Postprandial plasma amino acid concentrations and exogenous phenylalanine appearance rates increased after ingestion of PROT and AA (both, P < 0.001), with a greater increase following ingestion of AA when compared to PROT (time*group interaction P < 0.001). Exogenous phenylalanine release in plasma assessed over the 6 h postprandial period, was greater in AA (76 ± 9%) compared with PROT (59 ± 10%; P < 0.001). Ingestion of AA and PROT strongly increased muscle protein synthesis rates based upon L-[ring-2H5]-phenylalanine (time effect P < 0.001), with no differences between groups (from 0.037 ± 0.015 to 0.053 ± 0.014%·h−1 and from 0.039 ± 0.016 to 0.051 ± 0.010%·h−1, respectively; time*group interaction P = 0.629). Conclusions Ingestion of free amino acids as opposed to intact milk protein is followed by more rapid amino acid absorption and greater postprandial plasma amino acid availability, but this does not further augment postprandial muscle protein synthesis rates. Funding Sources This research did not receive external funding.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2457 ◽  
Author(s):  
Jess A. Gwin ◽  
David D. Church ◽  
Robert R. Wolfe ◽  
Arny A. Ferrando ◽  
Stefan M. Pasiakos

Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.


2019 ◽  
Vol 49 (6) ◽  
pp. 1275-1286
Author(s):  
Milena Casagranda ◽  
Priscila Berti Zanella ◽  
Alexandra Ferreira Vieira ◽  
Rodrigo Cauduro Oliveira Macedo

Purpose The purpose of the study was to evaluate the acute effect of milk proteins supplementation, compared to another nitrogen compound on muscle protein synthesis. Design/methodology/approach The search was conducted on MEDLINE® (via PUBMED®), Cochrane and Embase databases, using the terms “whey proteins,” “caseins,” “milk proteins,” “protein biosynthesis,” “human” and its related entry terms. The selected outcome was fractional synthetic rate (FSR) before (0) and 3 h after consumption of milk proteins, compared to supplementation with other protein sources or isolated amino acids. Findings The results were expressed as mean difference (MD) of absolute values between treatments with confidence interval (CI) of 95 per cent. Of the 1,913 identified studies, 4 were included, with a total of 74 participants. Milk proteins generated a greater FSR (MD 0.03 per cent/h, CI 95 per cent 0.02-0.04; p < 0.00001), compared to control group. Acute consumption of milk proteins promotes higher increase in FSR than other protein sources or isolated amino acids. Originality/value This paper is a systematic review of the effects of milk proteins supplementation, which is considered an important subject because of its large consumption among athletes and physical exercise practitioners.


2013 ◽  
Vol 19 ◽  
pp. 47-61 ◽  
Author(s):  
K. Kousoulaki ◽  
I. Rønnestad ◽  
H.J. Olsen ◽  
R. Rathore ◽  
P. Campbell ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1825 ◽  
Author(s):  
Insaf Berrazaga ◽  
Valérie Micard ◽  
Marine Gueugneau ◽  
Stéphane Walrand

Plant-sourced proteins offer environmental and health benefits, and research increasingly includes them in study formulas. However, plant-based proteins have less of an anabolic effect than animal proteins due to their lower digestibility, lower essential amino acid content (especially leucine), and deficiency in other essential amino acids, such as sulfur amino acids or lysine. Thus, plant amino acids are directed toward oxidation rather than used for muscle protein synthesis. In this review, we evaluate the ability of plant- versus animal-based proteins to help maintain skeletal muscle mass in healthy and especially older people and examine different nutritional strategies for improving the anabolic properties of plant-based proteins. Among these strategies, increasing protein intake has led to a positive acute postprandial muscle protein synthesis response and even positive long-term improvement in lean mass. Increasing the quality of protein intake by improving amino acid composition could also compensate for the lower anabolic potential of plant-based proteins. We evaluated and discussed four nutritional strategies for improving the amino acid composition of plant-based proteins: fortifying plant-based proteins with specific essential amino acids, selective breeding, blending several plant protein sources, and blending plant with animal-based protein sources. These nutritional approaches need to be profoundly examined in older individuals in order to optimize protein intake for this population who require a high-quality food protein intake to mitigate age-related muscle loss.


Sign in / Sign up

Export Citation Format

Share Document