scholarly journals Solubilization and fractionation of glycoproteins and glycolipids of KB cell membranes

1974 ◽  
Vol 140 (3) ◽  
pp. 469-478 ◽  
Author(s):  
Terry D. Butters ◽  
R. Colin Hughes

1. A fraction enriched in plasma membranes of human tumour KB cell line, a permissive cell for adenovirus type 5, was obtained. 2. Electrophoresis of the membranes in polyacrylamide gels with buffers containing sodium dodecyl sulphate showed that the membranes after reduction with 2-mercaptoethanol contained over 20 polypeptide species. Three polypeptides were glycosylated and had apparent mol.wts. of 92000, 72000 and 62000. 3. The glycoproteins and the specific receptors responsible for adenovirus adsorption to the membranes were readily extracted into solutions containing low concentrations of Triton X-100. Glycolipids and proteins were also made soluble. A membranous residue obtained after Triton X-100 extraction was enriched in several proteins that appeared to consist of polypeptides of lower molecular weight than the average of KB membrane polypeptides. 4. Sphingomyelin, cholesterol and triglycerides were similarly concentrated in the insoluble residue remaining after successive extractions of KB membranes with Triton X-100. Further, ceramide trihexoside was significantly less easily extracted from KB membranes than lactosyl ceramide. 5. The differences noted in the ease of extraction of membrane components are discussed. 6. The components of membranes made soluble by detergent extraction and containing the large part of the KB membrane glycoproteins were subjected to chromatography on Sepharose 6B and DEAE-cellulose and to isoelectric focusing in the presence of buffers containing Triton X-100. In general, the degree of separation into fractions enriched in individual glycoproteins was disappointing. Possible reasons for the poor fractionation of membrane components by chromatographic systems conveniently used for purification of proteins and glycoproteins of non-membranous origin are briefly discussed.

1990 ◽  
Vol 272 (3) ◽  
pp. 749-753 ◽  
Author(s):  
K M Hurst ◽  
B P Hughes ◽  
G J Barritt

1. Guanosine 5′-[gamma-thio]triphosphate (GTP[S]) stimulated by 50% the rate of release of [3H]choline and [3H]phosphorylcholine in rat liver plasma membranes labelled with [3H]choline. About 70% of the radioactivity released in the presence of GTP[S] was [3H]choline and 30% was [3H]phosphorylcholine. 2. The hydrolysis of phosphorylcholine to choline and the conversion of choline to phosphorylcholine did not contribute to the formation of [3H]choline and [3H]phosphorylcholine respectively. 3. The release of [3H]choline from membranes was inhibited by low concentrations of SDS or Triton X-100. Considerably higher concentrations of the detergents were required to inhibit the release of [3H]phosphorylcholine. 4. Guanosine 5′-[beta gamma-imido]triphosphate and guanosine 5′-[alpha beta-methylene]triphosphate, but not adenosine 5′-[gamma-thio]-triphosphate, stimulated [3H]choline release to the same extent as did GTP[S]. The GTP[S]-stimulated [3H]choline release was inhibited by guanosine 5′-[beta-thio]diphosphate, GDP and GTP but not by GMP. 5. It is concluded that, in rat liver plasma membranes, (a) GTP[S]-stimulated hydrolysis of phosphatidylcholine is catalysed predominantly by phospholipase D with some contribution from phospholipase C, and (b) the stimulation of phosphatidylcholine hydrolysis by GTP[s] occurs via a GTP-binding regulatory protein.


1981 ◽  
Vol 90 (1) ◽  
pp. 243-248 ◽  
Author(s):  
G Gorbsky ◽  
M S Steinberg

To characterize the desmosome components that mediate intercellular adhesion and cytoskeletal-plasma membrane attachment, we prepared whole desmosomes and isolated desmosomal intercellular regions (desmosomal "cores") from the living cell layers of bovine muzzle epidermis. The tissue was disrupted in a nonionic detergent at low pH, sonicated, and the insoluble residue fractionated by differential centrifugation and metrizamide gradient centrifugation. Transmission electron microscopic analyses reveal that a fraction obtained after differential centrifugation is greatly enriched in whole desmosomes that possess intracellular plaques. Metrizamide gradient centrifugation removes most of the plaque material, leaving the intercellular components and the adjoining plasma membranes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis coupled with methods that reveal carbohydrate-containing moieties on gels demonstrate that certain proteins present in whole desmosomes are glycosylated. These glycoproteins are specifically and greatly enriched in the desmosome cores of which they are the principal protein constituents, and thus may function as the intercellular adhesive of the desmosome.


1974 ◽  
Vol 52 (7) ◽  
pp. 620-630
Author(s):  
André Lemay ◽  
Fernand Labrie

Purified plasma membranes from bovine hypophyseal tissue have been fractionated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis under various conditions of pH and acrylamide concentrations. The best separation of protein components is achieved at a concentration of 7.5% acrylamide and at pH 7.1. Under these conditions, the electrophoretic pattern consistently shows 36 protein bands ranging in molecular weights from 250 000 to 15 000. Only one broad band, having an apparent molecular weight of 150 000, stains for glycoproteins by the period acid – Schiff technique. After electrophoresis on a two-dimensional polyacrylamide gel system using disc gels containing urea and Triton X-100 in the first dimension and SDS in the second dimension, approximately 45 different protein components can be identified. Less than 12% of the membrane proteins are solubilized by washing the membranes with 1 M KCl or NH4Cl. Denaturating agents like urea and lithium 3,4-diiodosalycilate solubilize 55–60% of membrane components. Adenohypophyseal plasma membranes show an eleetrophoretic pattern completely different from that obtained with membranes isolated from the intermediate or posterior pituitary lobes.


1984 ◽  
Vol 219 (1) ◽  
pp. 301-308 ◽  
Author(s):  
A A Davies ◽  
N M Wigglesworth ◽  
D Allan ◽  
R J Owens ◽  
M J Crumpton

Purified preparations of lymphocyte plasma membrane were extracted exhaustively with Nonidet P-40 in Dulbecco's phosphate-buffered saline medium. The insoluble fraction, as defined by sedimentation at 10(6) g-min, contained about 10% of the membrane protein as well as cholesterol and phospholipid. The lipid/protein ratio, cholesterol/phospholipid ratio and sphingomyelin content were increased in the residue. Density-gradient centrifugation suggested that the lipid and protein form a common entity. As judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Nonidet P-40-insoluble fractions of the plasma membranes of human B lymphoblastoid cells and pig mesenteric lymph-node lymphocytes possessed similar qualitative polypeptide compositions but differed quantitatively. Both residues comprised major polypeptides of Mr 28 000, 33 000, 45 000 and 68 000, together with a prominent band of Mr 120 000 in the human and of Mr 200 000 in the pig. The polypeptides of Mr 28 000, 33 000, 68 000 and 120 000 were probably located exclusively in the Nonidet P-40-insoluble residue, which also possessed a 4-fold increase in 5′-nucleotidase specific activity. The results indicate that a reproducible fraction of lymphocyte plasma membrane is insoluble in non-ionic detergents and that this fraction possesses a unique polypeptide composition. By analogy with similar studies with erythrocyte ghosts, it appears likely that the polypeptides are located on the plasma membrane's cytoplasmic face.


1976 ◽  
Vol 54 (5) ◽  
pp. 477-480 ◽  
Author(s):  
James W. Gurd ◽  
W. Howard Evans

Following electrophoresis of ovalbumin in sodium dodecyl sulfate (SDS) this glycoprotein bound 125I-labelled concanavalin A (Con A). The reaction was specific and proportional to the amount of glycoprotein present on the gel. This technique was used to study the Con-A-binding glycoproteins of liver cell surfaces. Mouse liver plasma membranes were purified and subfractionated to yield two fractions corresponding to the bile canalicular surface and the surface between adjacent hepatocytes (Evans, W. H. (1970) Biochem. J. 116, 833–842). Both fractions bound 125I-labelled Con A, the former binding two to three times more lectin than the latter. Following SDS gel electrophoresis individual membrane glycoproteins reacted with 125I-labelled Con A. Both membrane subfractions yielded qualitatively similar Con A binding profiles, seven binding proteins being present in each. The results are consistent with a generally uniform distribution of glycoproteins over the hepatocyte surface. The reaction of lectins with glycoproteins following SDS gel electrophoresis should find general application in the study of membrane composition.


1979 ◽  
Author(s):  
David R. Phillips ◽  
Lisa K. Jennings ◽  
Harold H. Edwards

Thrombin stimulation alters the membrane surface of platelets so that specific components on the membrane surface interact. To identify such “aggregation factors”, tne exposed membrane proteins of washed platelets were labeled by lactoperoxidase-catalyzed iodination and tested for their association with cytoskeletal structures. Control, thrombin-stimulated (TS; nM thrombin in mM EDTA to prevent aggregation) and thrombin aggregated (TA; 2 mM Ca++) platelets were treated with 1% Triton X-100. The insoluble material (isolated by centrifugation) from TS platelets, but not unstimulated platelets, had clusters of filamentous material with dense cores about 1 μ in diameter. Each cluster appeared to arise from one platelet and contained proteins with the Mr of actin actin-binding protein and myosin plus a 56K and 90K protein. Triton extraction of TA platelets produced an insoluble material with a similar protein composition as that from TS platelets; however, the filamentous clusters remained- aggregration, indicating tnat membrane components which aggregate platelets were still present. Analysis of iodinated membrane components revealed that all were solubilized by Triton from control and TS platelets while two glycoproteins, termed IIb and III, remained with the filamentous material from TA platelets. This and the observation that platelets lacking IIb and III cannot aggregate [JCI. 60: 535 (1977)], indicate that one or both of these membrane glycoproteins are involved in the direct Interaction of platelets during aggregation.


1987 ◽  
Vol 105 (4) ◽  
pp. 1571-1578 ◽  
Author(s):  
J Brown ◽  
E K Novak ◽  
K Takeuchi ◽  
K Moore ◽  
S Medda ◽  
...  

Mouse liver beta-glucuronidase is stabilized within microsomal vesicles by complexation with the accessory protein egasyn. The location of the beta-glucuronidase-egasyn complex and free egasyn within microsomal vesicles was investigated. Surprisingly, it was found that neither the complex nor free egasyn are intrinsic membrane components. Rather, both are either free within the vesicle lumen or only weakly bound to the inside of the vesicle membrane. This conclusion was derived from release studies using low concentrations of Triton X-100 or controlled sonication. Both the intact complex and free egasyn were released in parallel with lumenal proteins, not with intrinsic membrane components. Also, beta-glucuronidase was protected from digestion by proteinase K by the membrane of microsomal vesicles. The hydrophilic nature of both the complex and free egasyn was confirmed by phase separation experiments with the detergent Triton X-114. Egasyn is one of an unusual group of esterases that, despite being located within the lumen or only weakly bound to the lumenal surface of the endoplasmic reticulum, do not enter the secretory pathway.


1981 ◽  
Vol 194 (1) ◽  
pp. 331-339 ◽  
Author(s):  
S M Jarvis ◽  
J D Young

Nitrobenzylthioinosine, a potent nucleoside-transport inhibitor, binds to high-affinity sites on the human erythrocyte membrane. This binding is a specific interaction with functional nucleoside-transport sites. The protein(s) responsible for high-affinity nitrobenzylthioinosine binding was purified 13-fold by treatment of haemoglobin-free ‘ghosts’ with EDTA (pH 11.2) to remove extrinsic proteins, extraction of the protein-depleted membranes with Triton X-100 and passage of the soluble extract through a DEAE-cellulose column equilibrated with Triton X-100. Void-volume fractions were collected and treated with Bio-Beads SM-2 to remove detergent. These fractions contained 31% of the starting nitrobenzylthioinosine-binding activity. They also contained D-glucose-sensitive cytochalasin B-binding activity. Nitrobenzylthioinosine binding to the partially purified preparation was saturable (apparent Kd 1.6 nM) and inhibited by nitrobenzylthioguanosine, dipyridamole and uridine. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of pooled void-volume fractions revealed the presence of only two detectable protein bands, the broad zone 4.5 (containing glucose-transport protein) and a small amount of band 7.


1975 ◽  
Vol 150 (1) ◽  
pp. 59-69 ◽  
Author(s):  
T D Butters ◽  
R C Hughes

1. Human tumour KB cells growing in suspension culture were labelled by lactoperoxidase-catalysed iodination. Several major radioactively labelled proteins were detected by poly-acrylamide-gel electrophoresis in sodium dodecyl sulphate. 2. After reduction with 2-mercaptoethanol the major radioactive electrophoretic bands migrated as substances with apparent molecular weights of about 90,000, 70,000, 60,000, 50,000 and 34,000 and corresponded closely to the positions at which the major glycosylated polypeptide subunits of KB-cell homogenates migrated during electrophoresis under the same conditions. 3. All the iodinated protein bands except one were present in purified preparations of KB plasma membranes. 4. Most of the 50,000-molecular-weight species, supposedly a surface protein component labelled during iodination of intact and viable KB cells by a non-penetrating enzyme reagent, appeared in a crude nuclear pellet during fractionation. 5. The glyco-protein nature of the major external iodinated species of KB cells was confirmed by adsorption chromatography of these substances, dissolved in low concentrations of Triton X-100, on a lectin-Sepharose column. Two major enzyme markers of the KB plasma membrane, 5′-nucleotidase and alkaline phosphatase were also found to be glycoproteins. 6. Enzyme-catalysed incorporation of radioactive iodine into a fraction of low molecular weight and soluble in chloroform-methanol mixtures also occurred during lactoperoxidase treatment of intact KB cells. The partial characterization of this fraction is briefly described.


1978 ◽  
Vol 78 (3) ◽  
pp. 894-909 ◽  
Author(s):  
E Rodriguez Boulan ◽  
D D Sabatini ◽  
B N Pereyra ◽  
G Kreibich

Rat liver microsomal glycoproteins were purified by affinity chromatography on concanavalin A Sepharose columns from membrane and content fractions, separated from rough microsomes (RM) treated with low concentrations of deoxycholate (DOC). All periodic acid-Schiff (PAS)-positive glycoproteins of RM showed affinity for concanavalin A Sepharose; even after sodium dodecyl sulfate (SDS) acrylamide gel electrophoresis, most of the microsomal glycoproteins bound [125I]concanavalin A added to the gels, as detected by autoradiography. Two distinct sets of glycoproteins are present in the membrane and content fractions derived from RM. SDS acrylamide gel electrophoresis showed that RM membranes contain 15--20 glycoproteins (15--22% of the total microsomal protein) which range in apparent mol wt from 23,000 to 240,000 daltons. A smaller set of glycoproteins (five to seven polypeptides), with apparent mol wt between 60,000 and 200,000 daltons, was present in the microsomal content fraction. The disposition of the membrane glycoproteins with respect to the membrane plane was determined by selective iodination with the lactoperoxidase (LPO) technique. Intact RM were labeled on their outer face with 131I and, after opening of the vesicles with 0.05% DOC, in both faces with 125I. An analysis of iodination ratios for individual proteins separated electrophoretically showed that in most membrane glycoproteins, tyrosine residues are predominantly exposed on the luminal face of the vesicles, which is the same face on which the carbohydrate moieties are exposed. Several membrane glycoproteins are also exposed on the cytoplasmic surface and therefore have a transmembrane disposition. In this study, ribophorins I and II, two integral membrane proteins (mol wt 65,000 and 63,000) characteristic of RM, were found to be transmembrane glycoproteins. It is suggested that the transmembrane disposition of the ribophorins may be related to their possible role in ribosome binding and in the vectorial transfer of nascent polypeptides into the microsomal lumen.


Sign in / Sign up

Export Citation Format

Share Document