scholarly journals Inhibitory effect of carbon monoxide on the N-and ring-hydroxylation of 2-acetamidofluorene by hamster hepatic microsomal preparations (Short Communication)

1974 ◽  
Vol 144 (2) ◽  
pp. 427-430 ◽  
Author(s):  
P D Lotlikar ◽  
K Zaleski

The effect of CO on N-, 3-, 5- and 7-hydroxylation of 2-acetamidofluorene by liver microsomal fractions from control and 3-methylcholanthrene-pretreated hamsters was studied. All hydroxylations were inhibited by CO, but the degree of inhibition was different for each hydroxylation. The ratios of CO to O2 needed for 50% inhibition of the N-, 3-, 5- and 7-hydroxylations by control preparations were 8.0:1, 8.2:1, 4.2:1 and 7.1:1 respectively and by preparations from treated animals were 4.2:1, 8.9:1, 2.3:1 and 3.2:1 respectively. These results are discussed in terms of the possible presence of more than one type of cytochrome P-450 involved in hydroxylations of 2-acetamidofluorene by liver microsomal fractions from both control and pretreated hamsters.

1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


1970 ◽  
Vol 174 (1 Biological Ef) ◽  
pp. 205-217 ◽  
Author(s):  
David Y. Cooper ◽  
Heinz Schleyer ◽  
Dr. rer. Nat ◽  
Otto Rosenthal

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
YiLin Ren ◽  
Martin A D'Ambrosio ◽  
Hong Wang ◽  
Jeffrey L Garvin ◽  
Oscar A Carretero

Tubuloglomerular feedback (TGF) is an autoregulatory mechanism of the renal microcirculation in which the macula densa (MD) senses NaCl concentration in the lumen of the nephron and sends a signal that controls glomerular filtration rate by constricting the afferent arteriole (Af-Art). We have shown that MD depolarization is sufficient for inducing TGF. Carbon monoxide (CO), either endogenous or exogenous, is known to inhibit TGF, at least in part via cGMP. However, whether cGMP-independent mechanisms are involved, and where in the TGF cascade CO exerts its inhibitory effect, remain unknown. Thus we hypothesize that CO, acting via both cGMP-dependent and -independent mechanisms, attenuates TGF by acting downstream from MD cell depolarization. In vitro , microdissected rabbit Af-Arts and their attached MD were simultaneously perfused and TGF was measured as the decrease in Af-Art diameter. Depolarization of the MD was induced by switching luminal KCl from 4 to 50 mM in the presence of the potassium ionophore valinomycin, while adding the CO-releasing molecule CORM-3 to the MD perfusate at non-toxic concentrations. CORM-3 blunted depolarization-induced TGF at a concentration of 50 μM, from 3.6±0.4 to 2.5±0.4 μm (P<0.01), and completely abolished it at a concentration of 100 μM, to 0.1±0.1 μm (P<0.001, n=6). Similar results were found with 100 μM CORM-3 when depolarization was induced by nystatin (3.0±0.2 vs. 0.4±0.2 μm, P <0.001, n=6). This indicates that CO inhibits TGF acting downstream from depolarization. When cGMP generation was blocked with the guanylate cyclase inhibitor LY-83583 (1 μM) added to the MD, CORM-3 no longer had an effect on depolarization-induced TGF at 50 μM (2.9±0.4 vs. 3.0±0.4 μm), but retained partial inhibitory effect on TGF at 100 μM (1.3±0.2 μm, P =0.02, n=9). This suggests that CO acts via cGMP at low concentrations, but additional mechanisms of action may be involved at higher concentrations. Finally, we confirmed that cGMP inhibits TGF downstream from MD depolarization by adding the degradation-resistant cGMP analog dibutyryl-cGMP (500 μM), which attenuated depolarization-induced TGF (from 3.9±0.5 to 0.6±0.2 μm, P <0.01, n=6). Our results could help explain the physiological role of CO in controlling the renal microcirculation.


2002 ◽  
Vol 283 (3) ◽  
pp. F407-F414 ◽  
Author(s):  
Rui-Min Gu ◽  
Wen-Hui Wang

We have used the patch-clamp technique to study the effect of arachidonic acid (AA) on the basolateral K channels in the medullary thick ascending limb (mTAL) of rat kidney. An inwardly rectifying 50-pS K channel was identified in cell-attached and inside-out patches in the basolateral membrane of the mTAL. The channel open probability ( P o) was 0.51 at the spontaneous cell membrane potential and decreased to 0.25 by 30 mV hyperpolarization. The addition of 5 μM AA decreased channel activity, identified as NP o, from 0.58 to 0.08 in cell-attached patches. The effect of AA on the 50-pS K channel was specific because 10 μM cis-11,14,17-eicosatrienoic acid had no significant effect on channel activity. To determine whether the effect of AA was mediated by AA per se or by its metabolites, we examined the effect of AA on channel activity in the presence of indomethacin, an inhibitor of cyclooxygenase, or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), an inhibitor of cytochrome P-450 monooxygenase. Inhibition of cyclooxygenase increased channel activity from 0.54 to 0.9. However, indomethacin did not abolish the inhibitory effect of AA on the 50-pS K channel. In contrast, inhibition of cytochrome P-450 metabolism not only increased channel activity from 0.49 to 0.83 but also completely abolished the effect of AA. Moreover, addition of DDMS can reverse the inhibitory effect of AA on channel activity. The notion that the effect of AA was mediated by cytochrome P-450-dependent metabolites of AA is also supported by the observation that addition of 100 nM of 20-hydroxyeicosatetraenoic acid, a main metabolite of AA in the mTAL, can mimic the effect of AA. We conclude that AA inhibits the 50-pS K channel in the basolateral membrane of the mTAL and that the effect of AA is mainly mediated by cytochrome P-450-dependent metabolites of AA.


1983 ◽  
Vol 61 (5) ◽  
pp. 524-529 ◽  
Author(s):  
P. M. Bélanger ◽  
A. Atitsé-Gbeassor

The inhibitory effects of phenelzine on the hepatic microsomal demethylation of aminopyrine, N,N-dimethylaniline, and p-nitroanisole on the hydroxylation of aniline and on the pharmacokinetics of antipyrine were investigated in the rat. Phenelzine produced a competitive and noncompetitive inhibition of the demethylation of p-nitroanisole and N,N-dimethylaniline, respectively, but was a mixed-type inhibitor of the aminopyrine N-demethylase and aniline hydroxylase. The inhibition constant, Ki, varied between 0.06 to 0.25 mM depending on the substrate used. Preincubation of phenelzine for 30 min with the microsomal homogenate prior to substrate addition doubled its inhibitory effect. Phenelzine induced a type II spectral change when combined with oxidized cytochrome P-450 with a Ks value of 0.4 mM. The administration of one dose of 50 mg∙kg−1 of phenelzine sulfate concomitantly with 50 mg∙kg−1 of antipyrine resulted in a significant decrease of the serum elimination of antipyrine. The serum half-life, apparent volume of distribution, and total body clearance of antipyrine were modified to 3.6 h, 294.1 mL∙kg−1, and 56.8 mL∙h−1∙kg−1, respectively, from 1.5 h, 666.7 mL∙kg−1, and 312.5 mL∙h−1∙kg−1 when antipyrine was administered alone. It is concluded that the inhibitory effect of phenelzine on the microsomal oxidative reactions of rat liver is related to its interaction with cytochrome P-450.


1988 ◽  
Vol 37 (24) ◽  
pp. 4719-4726 ◽  
Author(s):  
Watanabe Kazuhito ◽  
Narimatsu Shiuo ◽  
Gohda Hiroshi ◽  
Yamamoto Ikuo ◽  
Yoshimura Hidetoshi

1990 ◽  
Vol 68 (6) ◽  
pp. 914-921 ◽  
Author(s):  
Eduardo T. Cánepa ◽  
Elena B. C. Llambías ◽  
Moisés Grinstein

In the present work we demonstrate that insulin decreases the phenobarbital-induced activities of δ-aminolevulinic acid synthase and ferrochelatase in isolated hepatocytes from normal and experimental-diabetic rats. Insulin concentrations required to produce significant inhibition in diabetic hepatocytes were higher than in normal cells. Under similar experimental conditions, insulin decreased the basal activities of δ-aminolevulinic acid synthase and ferrochelatase in hepatocytes from normal rats; no inhibitory effect was observed on the basal activity of δ-aminolevulinic acid synthase in hepatocytes from diabetic rats. Cytochrome P-450 content of both normal and diabetic cells was not affected by insulin in absence or presence of phenobarbital. The inhibitory action of insulin was exerted even when effective concentrations of glucagon, dexamethasone, or 8-(p-chlorophenylthio)-cAMP were present.Key words: δ-aminolevulinic acid synthase, ferrochelatase, cAMP, insulin, diabetic rat hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document