substrate addition
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 19)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 4 ◽  
Author(s):  
Mioko Tamura ◽  
Vidya Suseela

Warming can increase the efflux of carbon dioxide (CO2) from soils and can potentially feedback to climate change. In addition to warming, the input of labile carbon can enhance the microbial activity by stimulating the co-metabolism of recalcitrant soil organic matter (SOM). This is particularly true with SOM under invaded ecosystems where elevated CO2 and warming may increase the biomass of invasive species resulting in higher addition of labile substrates. We hypothesized that the input of labile carbon would instigate a greater soil organic carbon (SOC) loss with warming compared to the ambient temperature. We investigated this by incubating soils collected from a native pine (Pinus taeda) forest to which labile carbon from the invasive species kudzu (Pueraria lobata) was added. We evaluated the microbial extracellular enzyme activity, molecular composition of SOC and the temperature sensitivity of soil CO2 efflux under warming and labile carbon addition. After 14 months of soil incubation, the addition of labile C through kudzu extract increased the activity of β-1,4-glucosidase compared with the control. However, the activity of N-acetyl-β-D-glucosaminidase and fungal biomass (ergosterol) decreased with labile carbon addition. The activity of peroxidase increased with warming after 14 months of soil incubation. Although the carbon content of incubated soils did not vary with substrate and temperature treatments, the molecular composition of SOC indicated a general decrease in biopolymers such as cutin, suberin, long-chain fatty acids, and phytosterol with warming and an increasing trend of microbial-derived compounds with labile substrate addition. In soils that received an addition of labile C, the macro-aggregate stability was higher while the temperature sensitivity of soil C efflux was lower compared with the control. The increase in aggregate stability could enhance the physical protection of SOC from microbial decomposition potentially contributing to the observed pattern of temperature sensitivity. Our results suggest that warming could preferentially accelerate the decomposition of recalcitrant compounds while the addition of labile substrates could enhance microbial-derived compounds that are relatively resistant to further decomposition. Our study further emphasizes that global change factors such as plant invasion and climate change can differentially alter soil microbial activity and the composition of SOC.


2021 ◽  
Vol 8 (12) ◽  
pp. 197
Author(s):  
Jan Torsten Jeske ◽  
Claudia Gallert

Anaerobic co-digestion (Co-AD) is used to increase the effectiveness of anaerobic digestion (AD) using local “wastes”, adding economic and environmental benefits. Since system stability is of existential importance for the operation of wastewater treatment plants, thorough testing of potential co-substrates and their effects on the respective community and system performance is crucial for understanding and utilizing Co-AD to its best capacity. Food waste (FW) and canola lecithin (CL) were tested in mesophilic, lab-scale, semi-continuous reactors over a duration of 120 days with stepwise increased substrate addition. Key performance indicators (biogas, total/volatile solids, fatty acids) were monitored and combined with 16S-rRNA amplicon sequencing to assess the impact of co-substrate addition on reactor performance and microbial community composition (MCC). Additionally, the latter was then compared with natural shifts occurring in the wastewater treatment plant (WWTP, source) at the same time. An almost linear increase in biogas production with both co-substrates at an approximate 1:1 ratio with the organic loading rate (OLR) was observed. The MCCs in both experiments were mostly stable, but also prone to drift over time. The FW experiment MCC more closely resembled the original WWTP community and the observed shifts indicated high levels of functional redundancy. Exclusive to the CL co-substrate, a clear selection for a few operational taxonomic units (OTUs) was observed. There was little evidence for a persistent invasion and establishment of microorganisms from typical primary substrates into the stable resident community of the reactors, which is in line with earlier findings that suggested that the inoculum and history mostly define the MCC. However, external factors may still tip the scales in favor of a few r-strategists (e.g., Prolixibacter) in an environment that otherwise favors K-strategists, which may in fact also be recruited from the primary substrate (Trichococcus). In our study, specialization and diversity loss were also observed in response to the addition of the highly specialized CL, which in turn, may have adverse effects on the system’s stability and reduced resilience and recovery.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anke Bill ◽  
Sheryll Espinola ◽  
Daniel Guthy ◽  
Jacob R. Haling ◽  
Mylene Lanter ◽  
...  

AbstractWe present two high-throughput compatible methods to detect the interaction of ectopically expressed (RT-Bind) or endogenously tagged (EndoBind) proteins of interest. Both approaches provide temporal evaluation of dimer formation over an extended duration. Using examples of the Nrf2-KEAP1 and the CRAF-KRAS-G12V interaction, we demonstrate that our method allows for the detection of signal for more than 2 days after substrate addition, allowing for continuous monitoring of endogenous protein-protein interactions in real time.


2021 ◽  
Vol 21 (08) ◽  
pp. 375-380
Author(s):  
Huynh Thanh Toi ◽  
Vu Hung Hai ◽  
Nguyen Thi Hong Van

The carbon and artificial substrate integration was applied in mudskipper (Pseudapocryptes elongatus) culture to evaluate its effect on growth and enzyme activity. Wild mudskipper fries (6.9–7.3 cm; 3.88–4.12 g) were obtained in the coastal area of the Mekong delta. Fish were reared in 1 m3 fiber glass tanks containing 600 L of 15 ‰ seawater for 60 days in outdoor conditions. Mud was added to the tank bottom around 15 cm to simulate the culture condition as would be found in an earthen pond. Molasses (38% Carbon) was added daily to the culture water based on TAN level to balance C/N to 10. The results showed that the survival was in the range of 80.6–85%, and no significance in term of survival was found when comparing treatments. The individual weight of fish was 11.93–14.11 g/ind in range, fish in the culture where carbon and both carbon and substrate addition had significantly better growth and productivity than fish in the culture where molasses and substrates were not applied. The results of this study demonstrate that the growth performance and production of mudskipper significantly increased when the biofloc and substrate integration was applied.


Author(s):  
Brahim Arhoun ◽  
Irene Malpartida García ◽  
Maria Villen‐Guzman ◽  
Roberto Teofilo Abdala Diaz ◽  
Francisco Garcia‐Herruzo ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 765
Author(s):  
Susana D. Amaral ◽  
Paulo Branco ◽  
Filipe Romão ◽  
Maria Teresa Ferreira ◽  
António N. Pinheiro ◽  
...  

Requalification of low-head ramped weirs through the addition of substrates (retrofitting) has attracted attention in recent years. However, few studies are available on how this measure affects the negotiation of ramped weirs by fish. This study aimed to assess the performance of an experimental ramped weir (3.00 m long with 10% slope; 0.30 m head-drop) to enhance the passage of a potamodromous cyprinid species, the Iberian barbel (Luciobarbus bocagei). Attention was given to testing the effects of the addition of a substrate, in this case cobbles, to the ramp (Nature) vs. a smooth bottom (Control), and discharge (Q; 55 L·s−1 and 110 L·s−1 (or specific discharge per unit width, q = 92 L·s−1·m−1 and 183 L·s−1·m−1)) on fish passage performance. Fish physiological responses to stress and fatigue, measured by glucose and lactate concentrations in blood samples, were also analysed. Results showed that the Nature design generally increased fish movements and successful upstream passages, and enhanced fish passage performance by enabling faster negotiations. Fish movements were also affected by increasing discharge, registering reductions with 110 L·s−1. Results of the physiological parameters indicate that both glucose and lactate concentrations were also influenced by discharge. The outcomes from this study present important information about fish passage performance across low-head ramped weirs and could provide data needed to help biologists and engineers to develop more effective structures to alleviate small instream obstacles.


Author(s):  
Lydia-Ann J Ghuneim ◽  
Marco A Distaso ◽  
Tatyana N Chernikova ◽  
Rafael Bargiela ◽  
Evgenii A Lunev ◽  
...  

Abstract Filterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 µm-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in utilization of amino acids, organic acids, and sugars spiked at environmentally-relevant (nanomolar) concentrations. To identify changes in community structure, we used 16S rRNA amplicon and shotgun sequencing. Unlike the unfiltered water samples where the consumption of DOC was rapid, the filtered fraction showed a 3-days lag phase before the consumption started. Analysis of functional categories of clusters of orthologous groups of proteins (COGs) showed COGs associated with energy production increased in numbers in both fractions with substrate addition. The filtered fraction utilized low-molecular-weight (LMW) DOC at much slower rates than the whole community. Addition of nanomolar concentrations of LMW DOC did not measurably influence the composition of the microbial community nor the rate of consumption across all substrate types in either fraction. We conclude that due to their low activity, filterable microorganisms play a minor role in LMW DOC processing within short residence time of lotic freshwater systems.


Synthesis ◽  
2020 ◽  
Author(s):  
Yasuyuki Ura

AbstractCatalytic anti-Markovnikov (AM) oxidation of terminal alkenes can provide terminally oxyfunctionalized organic compounds. This short review mainly summarizes our recent progress on the Pd-catalyzed AM oxidations of aromatic and aliphatic terminal alkenes to give terminal acetals (oxidative acetalization) and aldehydes (Wacker-type oxidation), along with related reports. These reactions demonstrate the efficacy of the PdCl2(MeCN)2/CuCl/electron-deficient cyclic alkenes/O2 catalytic system. Notably, electron-deficient cyclic alkenes such as p-benzoquinones (BQs) and maleimides are key additives that facilitate nucleophilic attack of oxygen nucleophiles on coordinated terminal alkenes and enhance the AM selectivity. BQs also function to oxidize Pd(0) depending on the reaction conditions. Several other factors that improve the AM selectivity, such as the steric demand of the nucleo­philes, slow substrate addition, and halogen-directing groups, are also discussed.1 Introduction2 Anti-Markovnikov Oxidation of Aromatic Alkenes to Terminal Acetals­3 Anti-Markovnikov Oxidation of Aromatic Alkenes to Aldehydes4 Anti-Markovnikov Oxidation of Aliphatic Alkenes to Terminal Acetals­5 Anti-Markovnikov Oxidation of Aliphatic Alkenes to Aldehydes6 Conclusion


2020 ◽  
Vol 21 (17) ◽  
pp. 6008
Author(s):  
Ahmad Ali ◽  
Muhammad Imran Ghani ◽  
Ding Haiyan ◽  
Muhammad Iqbal ◽  
Zhihui Cheng ◽  
...  

Garlic substrate could influence plant growth through affecting soil microbiome structure. The relationship mechanism between changes in soil microbial communities, disease suppression and plant development, however, remains unclear, particularly in the degraded soil micro-ecological environment. In this study, garlic substrates as a soil amendment were incorporated with different ratios (1:100, 3:100 and 5:100 g/100 g of soil) in a replanted disturbed soil of long-term cucumber monoculture (annual double cropping system in a greenhouse). The results indicated that higher amount of C-amended garlic substrate significantly induced soil suppressiveness (35.9% greater than control (CK) against the foliar disease incidence rate. This inhibitory effect consequently improved the cucumber growth performance and fruit yield to 20% higher than the non-amended soil. Short-term garlic substrate addition modified the soil quality through an increase in soil organic matter (SOM), nutrient availability and enzymatic activities. Illumina MiSeq sequencing analysis revealed that soil bacterial and fungal communities in the garlic amendment were significantly different from the control. Species richness and diversity indices significantly increased under treated soil. The correlation-based heat map analysis suggested that soil OM, nutrient contents and biological activators were the primary drivers reshaping the microbial community structure. Furthermore, garlic substrate inhibited soil-borne pathogen taxa (Fusarium and Nematoda), and their reduced abundances, significantly affecting the crop yield. In addition, the host plant recruited certain plant-beneficial microbes due to substrate addition that could directly contribute to plant–pathogen inhibition and crop biomass production. For example, abundant Acidobacteria, Ascomycota and Glomeromycota taxa were significantly associated with cucumber yield promotion. Firmicutes, Actinobacteria, Bacteroidetes, Basidiomycota and Glomeromycota were the associated microbial taxa that possibly performed as antagonists of Fusarium wilt, with plant pathogen suppression potential in monocropped cucumber-planted soil.


Sign in / Sign up

Export Citation Format

Share Document