scholarly journals Purification and properties of adenylyl sulphate:ammonia adenylyltransferase from Chlorella catalysing the formation of adenosine 5′-phosphoramidate from adenosine 5′-phosphosulphate and ammonia

1981 ◽  
Vol 195 (3) ◽  
pp. 545-560 ◽  
Author(s):  
Heinz Fankhauser ◽  
Jerome A. Schiff ◽  
Leonard J. Garber

Extracts of Chlorella pyrenoidosa, Euglena gracilis var. bacillaris, spinach, barley, Dictyostelium discoideum and Escherichia coli form an unknown compound enzymically from adenosine 5′-phosphosulphate in the presence of ammonia. This unknown compound shares the following properties with adenosine 5′-phosphoramidate: molar proportions of constituent parts (1 adenine:1 ribose:1 phosphate:1 ammonia released at low pH), co-electrophoresis in all buffers tested including borate, formation of AMP at low pH through release of ammonia, mass and i.r. spectra and conversion into 5′-AMP by phosphodiesterase. This unknown compound therefore appears to be identical with adenosine 5′-phosphoramidate. The enzyme that catalyses the formation of adenosine 5′-phosphoramidate from ammonia and adenosine 5′-phosphosulphate was purified 1800-fold (to homogeneity) from Chlorella by using (NH4)2SO4 precipitation and DEAE-cellulose, Sephadex and Reactive Blue 2–agarose chromatography. The purified enzyme shows one band of protein, coincident with activity, at a position corresponding to 60000–65000 molecular weight, on polyacrylamide-gel electrophoresis, and yields three subunits on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of 26000, 21000 and 17000 molecular weight, consistent with a molecular weight of 64000 for the native enzyme. Isoelectrofocusing yields one band of pI4.2. The pH optimum of the enzyme-catalysed reaction is 8.8. ATP, ADP or adenosine 3′-phosphate 5′-phosphosulphate will not replace adenosine 5′-phosphosulphate, and the apparent Km for the last-mentioned compound is 0.82mm. The apparent Km for ammonia (assuming NH3 to be the active species) is about 10mm. A large variety of primary, secondary and tertiary amines or amides will not replace ammonia. One mol.prop. of adenosine 5′-phosphosulphate reacts with 1 mol.prop. of ammonia to yield 1 mol.prop. each of adenosine 5′-phosphoramidate and sulphate; no AMP is found. The highly purified enzyme does not catalyse any of the known reactions of adenosine 5′-phosphosulphate, including those catalysed by ATP sulphurylase, adenosine 5′-phosphosulphate kinase, adenosine 5′-phosphosulphate sulphotransferase or ADP sulphurylase. Adenosine 5′-phosphoramidate is found in old samples of the ammonium salt of adenosine 5′-phosphosulphate and can be formed non-enzymically if adenosine 5′-phosphosulphate and ammonia are boiled. In the non-enzymic reaction both adenosine 5′-phosphoramidate and AMP are formed. Thus the enzyme forms adenosine 5′-phosphoramidate by selectively speeding up an already favoured reaction.

1981 ◽  
Vol 197 (2) ◽  
pp. 427-436 ◽  
Author(s):  
G A Nimmo ◽  
J R Coggins

Neurospora crassa contains three isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, which are inhibited by tyrosine, tryptophan and phenylalanine respectively, and it was estimated that the relative proportions of the total activity were 54%, 14% and 32% respectively. The tryptophan-sensitive isoenzyme was purified to homogeneity as judged by polyacrylamide-gel electrophoresis and ultracentrifugation. The tyrosine-sensitive and phenylalanine-sensitive isoenzymes were only partially purified. The three isoenzymes were completely separated from each other, however, and can be distinguished by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and Ultrogel AcA-34 and polyacrylamide-gel electrophoresis. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate indicated that the tryptophan-sensitive isoenzyme contained one type of subunit of molecular weight 52000. The molecular weight of the native enzyme was found to be 200000 by sedimentation-equilibrium centrifugation, indicating that the enzyme is a tetramer, and the results of cross-linking and gel-filtration studies were in agreement with this conclusion.


1985 ◽  
Vol 226 (1) ◽  
pp. 147-153 ◽  
Author(s):  
D B Harper ◽  
J T Kennedy

An enzyme catalysing the O-methylation of isobutyraldoxime by S-adenosyl-L-methionine was isolated from Pseudomonas sp. N.C.I.B. 11652. The enzyme was purified 220-fold by DEAE-cellulose chromatography, (NH4)2SO4 fractionation, gel filtration on Sephadex G-100 and chromatography on calcium phosphate gel. Homogeneity of the enzyme preparation was confirmed by isoelectric focusing on polyacrylamide gel and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The enzyme showed a narrow pH optimum at 10.25, required thiol-protecting agents for activity and was rapidly denatured at temperatures above 35 degrees C. The Km values for isobutyraldoxime and S-adenosyl-L-methionine were respectively 0.24 mM and 0.15 mM. Studies on substrate specificity indicated that attack was mainly restricted to oximes of C4-C6 aldehydes, with preference being shown for those with branching in the 2- or 3-position. Ketoximes were not substrates for the enzyme. Gel filtration on Sephadex G-100 gave an Mr of 84 000 for the intact enzyme, and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated an Mr of 37 500, suggesting the presence of two subunits in the intact enzyme. S-Adenosylhomocysteine was a powerful competitive inhibitor of S-adenosylmethionine, with a Ki of 0.027 mM. The enzyme was also susceptible to inhibition by thiol-blocking reagents and heavy-metal ions. Mg2+ was not required for maximum activity.


1977 ◽  
Vol 161 (3) ◽  
pp. 509-515 ◽  
Author(s):  
J Williams ◽  
H Villarroya ◽  
F Petek

Five alpha-D-galactosidases (alpha-D-galactoside galactohydrolase; EC 3.2.1.22) have been identified by chromatography and polyacrylamide-disc-gel electrophoresis in the germinated seeds of Trifolium repens (white clover). alpha-Galactosidase I has been purified to homogeneity with an approx. 2000-fold increase in specific activity. The enzyme was purified by a procedure which included precipitation by dialysis against citrate/phosphate buffer, pH3.5; (NH4)2SO4 precipitation; hydroxyapatite, DEAE-cellulose and ECTEOLA-cellulose column chromatography. Each stage of purification was controlled by polyacrylamide-disc-gel electrophoresis; the purified enzyme showed a single protein band that corresponded to the alpha-D-galactosidic activity. The pH optimum was found to be between pH 3.8 and 4.2; the enzyme is highly thermolabile. Hydrolysis of oligosaccharides and galactomannans has been examined, and it has been found that alpha-galactosidase I exhibits two enzymic activities, namely alpha-D-galactoside galactohydrolase and galactosyltransferase. By the polyacrylamide-gel-electrophoresis method of Hendrick & Smith (1968), and by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the mol.wt. has been estimated to be 43 000 and 41 000 respectively. These results indicate that alpha-galactosidase I is a monomeric protein and that both enzymic activities associated with the enzyme reside on the same polypeptide chain.


1978 ◽  
Vol 175 (3) ◽  
pp. 1069-1077 ◽  
Author(s):  
J Williams ◽  
H Villarroya ◽  
F Petek

Five alpha-galactosidases (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) were identified by chromatography and by their different electrophoretic mobilities, in the germinated seeds of Trifolium repens (white clover). alpha-Galactosidases II, III and IV were purified to homogeneity, with increases in specific activity of approx. 4600-, 4900- and 2800-fold respectively. The enzymes were purified by a procedure that included (NH4)2SO4 precipitation, hydroxyapatite, Sephadex G-75 and DEAE-cellulose chromatography, and preparative polyacrylamide-gel disc electrophoresis. The purified enzymes showed a single protein band, corresponding to the alpha-galactosidase activity, when examined by polyacrylamide-gel electrophoresis. The pH optimum was determined with o-nitrophenyl alpha-D-galactoside and the galactomannan of T. repens To as substrate. All three enzymes are highly thermolabile. Hydrolysis of oligosaccharides and galactomannans was examined, including two galactomannans from the germinated seed of T. repens (T24 and T36). By sodium dodecyl sulphate/polyacrylamide-gel electrophoresis the mol.wts. of the multiple forms of enzyme were found to be identical (41 000).


1977 ◽  
Vol 167 (3) ◽  
pp. 685-692 ◽  
Author(s):  
David B. Harper

1. A strain of the fungus Fusarium solani able to use benzonitrile as sole source of carbon and nitrogen was isolated by elective culture. 2. Respiration studies indicate that the nitrile, after degradation to benzoate, is catabolized via catechol or alternatively via p-hydroxybenzoate and 3,4-dihydroxybenzoate. 3. Cell-free extracts of benzonitrile-grown cells contain an enzyme mediating the conversion of benzonitrile into benzoate and ammonia. 4. The nitrilase enzyme was purified by DEAE-cellulose chromatography, (NH4)2SO4 precipitation and gel filtration on Sephadex G-200. The homogeneity of the purified enzyme preparation was confirmed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and isoelectric focusing on polyacrylamide gel. 5. The enzyme showed a broad pH optimum between pH7.8 and 9.1 and a Km with benzonitrile as substrate of 0.039mm. The activation energy of the reaction deduced from an Arrhenius plot was 48.4kJ/mol. 6. The enzyme was susceptible to inhibition by thiol-specific reagents and certain heavy metal ions. 7. Gel filtration gave a value of 620000 for the molecular weight of the intact enzyme. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis demonstrated that the enzyme was composed of eight subunits of mol.wt. 76000. 8. Rates of enzymic attack on various substrates indicated that the nitrilase has a fairly broad specificity and that the fungus probably plays an important role in the biodegradation of certain nitrilic herbicides in the environment.


1986 ◽  
Vol 32 (6) ◽  
pp. 487-493 ◽  
Author(s):  
H. Eng ◽  
J. A. Robertson ◽  
G. W. Stemke

In the several strains of Ureaplasma urealyticum that we examined, all originally isolated from human sources, the ureases were found to have a pH optimum between 7.2 and 7.5, and the Km was approximately 2.5 mM urea. Using nonreducing, nondenaturing conditions for polyacrylamide gel electrophoresis, the molecular weight of the holoenzyme was determined to be approximately 380 000. Treatment with reducing agents did not affect the electrophoretic mobility and, therefore, the molecular weight of ureaplasma urease. Immunoblot analysis (using antiserum to U. urealyticum urease) after sodium dodecyl sulfate – polyacrylamide gel electrophoresis under nonreducing, denaturing conditions revealed two antigenically reactive bands of molecular weight 174 000 and 179 000. Under reducing, denaturing conditions, a single band of molecular weight approximately 179 000 was detected. Multiple forms of urease were detected by isoelectrofocusing but not by zonal electrophoresis.


1977 ◽  
Vol 55 (9) ◽  
pp. 958-964 ◽  
Author(s):  
M. P. C. Ip ◽  
R. J. Thibert ◽  
D. E. Schmidt Jr.

Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and α-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of α-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.


1981 ◽  
Vol 195 (2) ◽  
pp. 389-397 ◽  
Author(s):  
D A Wiginton ◽  
M S Coleman ◽  
J J Hutton

Adenosine deaminase was purified 3038-fold to apparent homogeneity from human leukaemic granulocytes by adenosine affinity chromatography. The purified enzyme has a specific activity of 486 mumol/min per mg of protein at 35 degrees C. It exhibits a single band when subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, non-denaturing polyacrylamide-gel electrophoresis and isoelectric focusing. The pI is 4.4. The enzyme is a monomeric protein of molecular weight 44000. Both electrophoretic behaviour and molecular weight differ from those of the low-molecular-weight adenosine deaminase purified from human erythrocytes. Its amino acid composition is reported. Tests with periodic acid-Schiff reagent for associated carbohydrate are negative. Of the large group of physiological compounds tested as potential effectors, none has a significant effect. The enzyme is specific for adenosine and deoxyadenosine, with Km values of 48 microM and 34 microM respectively. There are no significant differences in enzyme function on the two substrates. erythro-9-(2-Hydroxy non-3-yl) adenine is a competitive inhibitor, with Ki 15 nM. Deoxycoformycin inhibits deamination of both adenosine and deoxyadenosine, with an apparent Ki of 60-90 pM. A specific antibody was developed against the purified enzyme, and a sensitive radioimmunoassay for adenosine deaminase protein is described.


Sign in / Sign up

Export Citation Format

Share Document