Purification and partial characterization of cysteine-glutamate transaminase from rat liver

1977 ◽  
Vol 55 (9) ◽  
pp. 958-964 ◽  
Author(s):  
M. P. C. Ip ◽  
R. J. Thibert ◽  
D. E. Schmidt Jr.

Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and α-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of α-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.

1981 ◽  
Vol 195 (2) ◽  
pp. 389-397 ◽  
Author(s):  
D A Wiginton ◽  
M S Coleman ◽  
J J Hutton

Adenosine deaminase was purified 3038-fold to apparent homogeneity from human leukaemic granulocytes by adenosine affinity chromatography. The purified enzyme has a specific activity of 486 mumol/min per mg of protein at 35 degrees C. It exhibits a single band when subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, non-denaturing polyacrylamide-gel electrophoresis and isoelectric focusing. The pI is 4.4. The enzyme is a monomeric protein of molecular weight 44000. Both electrophoretic behaviour and molecular weight differ from those of the low-molecular-weight adenosine deaminase purified from human erythrocytes. Its amino acid composition is reported. Tests with periodic acid-Schiff reagent for associated carbohydrate are negative. Of the large group of physiological compounds tested as potential effectors, none has a significant effect. The enzyme is specific for adenosine and deoxyadenosine, with Km values of 48 microM and 34 microM respectively. There are no significant differences in enzyme function on the two substrates. erythro-9-(2-Hydroxy non-3-yl) adenine is a competitive inhibitor, with Ki 15 nM. Deoxycoformycin inhibits deamination of both adenosine and deoxyadenosine, with an apparent Ki of 60-90 pM. A specific antibody was developed against the purified enzyme, and a sensitive radioimmunoassay for adenosine deaminase protein is described.


1972 ◽  
Vol 129 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Ragnar Flengsrud ◽  
Bjarne Østerud ◽  
Hans Prydz

1. The supernatant obtained by centrifugation of a rat liver homogenate at 100000g for 1h contained a heat-labile macromolecular inhibitor of the thrombin–fibrinogen reaction. 2. The inhibitor was purified to electrophoretic homogeneity by repeated preparative polyacrylamide disc electrophoresis. Inhibition was observed with purified inhibitor equivalent to about 1μg of protein/ml. 3. The inhibitor had a pI of 3.50–3.75, a molecular weight (from sodium dodecyl sulphate–polyacrylamide-gel electrophoresis) of 72000±3000 and was inactivated by p-hydroxymercuribenzoate or 5,5′-dithiobis-(2-nitrobenzoic acid). 4. Kinetic studies revealed a non-competitive inhibition, with the inhibitor probably acting on the thrombin–fibrinogen complex.


1982 ◽  
Vol 203 (1) ◽  
pp. 245-251 ◽  
Author(s):  
E M Bailyes ◽  
A C Newby ◽  
K Siddle ◽  
J P Luzio

1. A variety of detergents were used to solubilize 5′-nucleotidase from rat liver plasma membranes. 2. The zwitterionic detergent Sulphobetaine 14 gave optimal solubilization by the criteria of release into a high-speed-centrifugation supernatant and the formation of the smallest and least polydisperse active enzyme observed on polyacrylamide-gel electrophoresis. 3. The Sulphobetaine 14-solubilized enzyme from rat liver was purified by using the conventional techniques of ion-exchange chromatography and gel filtration, or by an immunoaffinity step with a monoclonal antibody immunoadsorbent. 4. 5′-Nucleotidase was purified at least 12 000-fold relative to liver homogenate by the immunoaffinity purification scheme and had a specific activity in the range 285-340 mumol/min per mg of protein. The yield was in the range 9-16%. 5. The purified enzyme shows a major polypeptide band of apparent Mr 70 000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and a minor band of apparent Mr 38 000. 6. A rational approach to the general problem of the purification of minor intrinsic membrane proteins is discussed, with the use of polyacrylamide-gel electrophoresis to determine the most appropriate detergent and monoclonal antibodies in subsequent immunoaffinity purification.


1982 ◽  
Vol 201 (1) ◽  
pp. 27-37 ◽  
Author(s):  
C H Pearson ◽  
G J Gibson

A proteoglycan purified from 4 M-guanidinium chloride extracts of bovine periodontal ligament closely resembled that of bovine skin, except for a rather lower protein content and a higher molecular weight (120 000 compared with about 90 000) by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The latter difference was explained by the molecular weights (29 000 and 16 000) of the respective dermatan sulphate components, each of which was rich in L-iduronate (about 75% of the total hexuronate). Significant amounts of other glycosaminoglycans did not occur in these proteoglycans, which were homogenous on gel chromatography and agarose/polyacrylamide-gel electrophoresis. Polydispersity was observed in sedimentation equilibrium experiments, but proteolysis or self-association of the proteodermatan sulphates may have affected these results. Ligament proteoglycans that were almost completely extracted with 0.1 M-NaCl contained less protein of a completely different amino acid composition than the proteodermatan sulphates. They were heterogeneous in size but generally smaller than cartilage proteoglycans and L-iduronate was a component, comprising about 7% of the total hexuronate of the sulphated galactosaminoglycan chains. The latter consisted of two fractions differing in molecular weight, but a dermatan sulphate with a high L-iduronate content was not present. These proteoglycans had some resemblance to D-glucuronate-rich proteoglycans of other non-cartilaginous tissues. Such compounds, however, are difficult to categorize at present.


1980 ◽  
Vol 191 (3) ◽  
pp. 799-809 ◽  
Author(s):  
R G Sutcliffe ◽  
B M Kukulska-Langlands ◽  
J R Coggins ◽  
J B Hunter ◽  
C H Gore

Pregnancy-associated plasma protein-A (PAPP-A) has been purified by a combination of methods including antibody-affinity chromatography. The resultant protein, obtained in 16% yield from maternal serum, appeared as a single major component on non-denaturing polyacrylamide and SDS/polyacrylamide gel electrophoresis. The protein showed a single component when analysed by isoelectric focusing under denaturing conditions in the presence and absence of reduction and had a pI of 4.34 and 4.42 respectively. These pI values were indistinguishable from those of alpha 2-macroglobulin (alpha 2M). The molecular weight of the PAPP-A polypeptide as shown by SDS/polyacrylamide-gel electrophoresis was 187000, with a minor component of mol.wt. 82500 that was attributed to proteolysis. Since native PAPP-A had a molecular weight on gel chromatography very similar to that of alpha 2M (620000–820000), it was concluded that PAPP-A was a homotetramer. In the absence of reduction, a high-molecular-weight (420000) protomer of PAPP-A was found. It was deduced that PAPP-A, like alpha 2M, is a dinner, whose protomers are composed of disulphide-linked polypeptide chains. It was found that the molecular weight of the PAPP-A polypeptide exceeded that of alpha 2M by 3.3%, but that the total carbohydrate content of PAPP-A exceeded that of alpha 2M by 10% and that its neutral carbohydrate content exceeded that of alpha 2M by between 7.4 and 9.0%. The significance of the estimated molecular weights of alpha 2M (181000) and its major tryptic fragments is discussed in the light of published values. A tryptic fragment alpha 2M (82500 mol.wt.) was apparently the same size as the major tryptic fragment of PAPP-A.


1981 ◽  
Vol 195 (3) ◽  
pp. 545-560 ◽  
Author(s):  
Heinz Fankhauser ◽  
Jerome A. Schiff ◽  
Leonard J. Garber

Extracts of Chlorella pyrenoidosa, Euglena gracilis var. bacillaris, spinach, barley, Dictyostelium discoideum and Escherichia coli form an unknown compound enzymically from adenosine 5′-phosphosulphate in the presence of ammonia. This unknown compound shares the following properties with adenosine 5′-phosphoramidate: molar proportions of constituent parts (1 adenine:1 ribose:1 phosphate:1 ammonia released at low pH), co-electrophoresis in all buffers tested including borate, formation of AMP at low pH through release of ammonia, mass and i.r. spectra and conversion into 5′-AMP by phosphodiesterase. This unknown compound therefore appears to be identical with adenosine 5′-phosphoramidate. The enzyme that catalyses the formation of adenosine 5′-phosphoramidate from ammonia and adenosine 5′-phosphosulphate was purified 1800-fold (to homogeneity) from Chlorella by using (NH4)2SO4 precipitation and DEAE-cellulose, Sephadex and Reactive Blue 2–agarose chromatography. The purified enzyme shows one band of protein, coincident with activity, at a position corresponding to 60000–65000 molecular weight, on polyacrylamide-gel electrophoresis, and yields three subunits on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of 26000, 21000 and 17000 molecular weight, consistent with a molecular weight of 64000 for the native enzyme. Isoelectrofocusing yields one band of pI4.2. The pH optimum of the enzyme-catalysed reaction is 8.8. ATP, ADP or adenosine 3′-phosphate 5′-phosphosulphate will not replace adenosine 5′-phosphosulphate, and the apparent Km for the last-mentioned compound is 0.82mm. The apparent Km for ammonia (assuming NH3 to be the active species) is about 10mm. A large variety of primary, secondary and tertiary amines or amides will not replace ammonia. One mol.prop. of adenosine 5′-phosphosulphate reacts with 1 mol.prop. of ammonia to yield 1 mol.prop. each of adenosine 5′-phosphoramidate and sulphate; no AMP is found. The highly purified enzyme does not catalyse any of the known reactions of adenosine 5′-phosphosulphate, including those catalysed by ATP sulphurylase, adenosine 5′-phosphosulphate kinase, adenosine 5′-phosphosulphate sulphotransferase or ADP sulphurylase. Adenosine 5′-phosphoramidate is found in old samples of the ammonium salt of adenosine 5′-phosphosulphate and can be formed non-enzymically if adenosine 5′-phosphosulphate and ammonia are boiled. In the non-enzymic reaction both adenosine 5′-phosphoramidate and AMP are formed. Thus the enzyme forms adenosine 5′-phosphoramidate by selectively speeding up an already favoured reaction.


1981 ◽  
Vol 193 (2) ◽  
pp. 503-512 ◽  
Author(s):  
E O Kajander ◽  
A M Raina

S-Adenosyl-L-homocysteine hydrolase has been purified to apparent homogeneity from rat liver by means of affinity chromatography on 8-(3-aminopropylamino)adenosine linked to Sepharose. The purified enzyme was free from adenosine kinase and adenosine deaminase activities and was homogeneous on SDS/polyacrylamide-gel electrophoresis which gave a subunit mol.wt. of 47 000. The native enzyme showed some microheterogeneity on polyacrylamide-gel electrophoresis under increased-resolution conditions but was homogeneous on isoelectric focusing (pI 5.6). The molecular weight of the native enzyme was about 220 000 as judged by pore-gradient electrophoresis. The native enzyme bound adenosine tightly and showed Km values of 0.6 microM, 0.9 microM and 60 microM for adenosine, S-adenosyl-L-homocysteine and L-homocysteine respectively. The enzyme was rapidly inactivated when incubated in the presence of adenosine, S-adenosyl-L-homocysteine or several adenosine derivatives or analogues. Inactivation took place both at 0 and 37 degrees C. Freezing in the absence of glycerol resulted in the appearance of dissociation products of the oligomeric protein. Multimer formation was observed at low thiol concentrations.


1982 ◽  
Vol 60 (4) ◽  
pp. 463-470 ◽  
Author(s):  
T. Youdale ◽  
J. P. MacManus ◽  
J. F. Whitfield

Two nonidentical subunits of mammalian ribonucleotide reductase, L1 and L2, from regenerating rat liver have been extensively purified for the first time. They were separated by dATP-Sepharose affinity chromatography. Subunit L1, which bound to dATP-Sepharose, was eluted with 50 mM ATP and purified to homogeneity (as demonstrated by sodium dodecyl sulfate (SDS) – polyacrylamide gel electrophoresis) by molecular exclusion high-pressure liquid chromatography (HPLC). This subunit had an apparent relative mass (Mr) of 45 000 and a Km of 0.9 × 10−4 for CDP. Subunit L2, which did not bind to dATP-Sepharose, was purified by pH 5.2 precipitation followed by chromatography on CM-Sephadex, molecular exclusion HPLC, and DEAE-cellulose. This subunit contained iron and had an apparent Mr of 120 000 by HPLC molecular exclusion chromatography, but showed two bands (Mr 75 000 and Mr 47 000) on SDS–polyacrylamide gel electrophoresis. Neither L1 nor L2 separately had any enzyme activity but when combined they reduced CDP to dCDP.


Sign in / Sign up

Export Citation Format

Share Document