scholarly journals Organization of the multifunctional enzyme type 1: interaction between N- and C-terminal domains is required for the hydratase-1/isomerase activity

2002 ◽  
Vol 367 (2) ◽  
pp. 433-441 ◽  
Author(s):  
Tiila-Riikka KIEMA ◽  
Jukka P. TASKINEN ◽  
Päivi L. PIRILÄ ◽  
Kari T. KOIVURANTA ◽  
Rik K. WIERENGA ◽  
...  

Rat peroxisomal multifunctional enzyme type 1 (perMFE-1) is a monomeric protein of β-oxidation. We have defined five functional domains (A, B, C, D and E) in the perMFE-1 based on comparison of the amino acid sequence with homologous proteins from databases and structural data of the hydratase-1/isomerases (H1/I) and (3S)-hydroxyacyl-CoA dehydrogenases (HAD). Domain A (residues 1—190) comprises the H1/I fold and catalyses both 2-enoyl-CoA hydratase-1 and Δ3—Δ2-enoyl-CoA isomerase reactions. Domain B (residues 191—280) links domain A to the (3S)-dehydrogenase region, which includes both domain C (residues 281—474) and domain D (residues 480—583). Domains C and D carry features of the dinucleotide-binding and the dimerization domains of monofunctional HADs respectively. Domain E (residues 584—722) has sequence similarity to domain D of the perMFE-1, which suggests that it has evolved via partial gene duplication. Experiments with engineered perMFE-1 variants demonstrate that the H1/I competence of domain A requires stabilizing interactions with domains D and E. The variant His-perMFE (residues 288—479)Δ, in which the domain C is deleted, is stable and has hydratase-1 activity. It is proposed that the extreme C-terminal domain E in perMFE-1 serves the following three functions: (i) participation in the folding of the N-terminus into a functionally competent H1/I fold, (ii) stabilization of the dehydrogenation domains by interaction with the domain D and (iii) the targeting of the perMFE-1 to peroxisomes via its C-terminal tripeptide.

2000 ◽  
Vol 346 (3) ◽  
pp. 799-804 ◽  
Author(s):  
Wen-Yi WANG ◽  
Shwu-Huey LIAW ◽  
Ta-Hsiu LIAO

Approximately 95% of the amino acid sequence of a shrimp (Penaeus japonicus) nuclease was derived from protease-digested peptides. A 1461-base cDNA for the nuclease was amplified and sequenced with degenerate primers based on the amino acid sequence and then specific primers by 3ʹ and 5ʹ RACE (rapid amplification of cDNA ends). It contains an open reading frame encoding a putative 21-residue signal peptide and a 381-residue mature protein. The N-terminus of the enzyme is pyroglutamate, deduced from composition and matrix-assisted laser desorption ionization-time-of-flight MS analyses, and confirmed by a glutamine residue in the cDNA sequence. The enzyme has 11 Cys residues, forming five intramolecular disulphides. The eleventh Cys residue was linked to a thiol compound with an estimated molecular mass of between 500 and 700 Da. A sequence similarity search revealed no homologous proteins but residues 205-255 shared a conserved active-site motif within a distinct group of nucleases. His211 in this conserved motif was shown to be very important in catalysis by site-specific modification with 14C-labelled iodoacetate. The shrimp nuclease, previously designated DNase I, does indeed possess a low level of hydrolytic activity towards RNA in the presence of Mg2+ and Ca2+. The conservation of functionally important residues during distant evolution might imply that the catalytic mechanisms are similar in these nucleases, which should be classified in one subfamily. Finally, an active-site structure for shrimp nuclease was proposed on the basis of published structural data and the results of mutational and biochemical analyses of Serratia nuclease.


1995 ◽  
Vol 69 (11) ◽  
pp. 7274-7277 ◽  
Author(s):  
J I Casal ◽  
J P Langeveld ◽  
E Cortés ◽  
W W Schaaper ◽  
E van Dijk ◽  
...  

1989 ◽  
Vol 9 (10) ◽  
pp. 4459-4466 ◽  
Author(s):  
K Kuroki ◽  
R Russnak ◽  
D Ganem

The preS1 surface glycoprotein of hepatitis B virus is targeted to the endoplasmic reticulum (ER) and is retained in this organelle when expressed in the absence of other viral gene products. The protein is also acylated at its N terminus with myristic acid. Sequences responsible for its ER retention have been identified through examination of mutants bearing lesions in the preS1 coding region. These studies reveal that such sequences map to the N terminus of the molecule, between residues 6 and 19. Molecules in which this region was present remained in the ER; those in which it had been deleted were secreted from the cell. Although all deletions which allowed efficient secretion also impaired acylation of the polypeptide, myristylation alone was not sufficient for ER retention: point mutations which eliminated myristylation did not lead to secretion. These data indicate that an essential element for ER retention resides in a 14-amino-acid sequence that is unrelated to previously described ER retention signals.


Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 516-522 ◽  
Author(s):  
Gustavo Fermin ◽  
Valentina Inglessis ◽  
Cesar Garboza ◽  
Sairo Rangel ◽  
Manuel Dagert ◽  
...  

Local varieties of papaya grown in the Andean foothills of Mérida, Venezuela, were transformed independently with the coat protein (CP) gene from two different geographical Papaya ringspot virus (PRSV) isolates, designated VE and LA, via Agrobacterium tumefaciens. The CP genes of both PRSV isolates show 92 and 96% nucleotide and amino acid sequence similarity, respectively. Four PRSV-resistant R0 plants were intercrossed or selfed, and the progenies were tested for resistance against the homologous isolates VE and LA, and the heterologous isolates HA (Hawaii) and TH (Thailand) in greenhouse conditions. Resistance was affected by sequence similarity between the transgenes and the challenge viruses: resistance values were higher for plants challenged with the homologous isolates (92 to 100% similarity) than with the Hawaiian (94% similarity) and, lastly, Thailand isolates (88 to 89% similarity). Our results show that PRSV CP gene effectively protects local varieties of papaya against homologous and heterologous isolates of PRSV.


1986 ◽  
Vol 235 (3) ◽  
pp. 895-898 ◽  
Author(s):  
M S López de Haro ◽  
A Nieto

An almost full-length cDNA coding for pre-uteroglobin from hare lung was cloned and sequenced. The derived amino acid sequence indicated that hare pre-uteroglobin contained 91 amino acids, including a signal peptide of 21 residues. Comparison of the nucleotide sequence of hare pre-uteroglobin cDNA with that previously reported for the rabbit gene indicated five silent point substitutions and six others leading to amino acid changes in the coding region. The untranslated regions of both pre-uteroglobin mRNAs were very similar. The amino acid changes observed are discussed in relation to the different progesterone-binding abilities of both homologous proteins.


1992 ◽  
Vol 281 (3) ◽  
pp. 703-708 ◽  
Author(s):  
H Takeuchi ◽  
Y Shibano ◽  
K Morihara ◽  
J Fukushima ◽  
S Inami ◽  
...  

The DNA encoding the collagenase of Vibrio alginolyticus was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited both collagenase antigen and collagenase activity. The open reading frame from the ATG initiation codon was 2442 bp in length for the collagenase structural gene. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature collagenase consists of 739 amino acids with an Mr of 81875. The amino acid sequences of 20 polypeptide fragments were completely identical with the deduced amino acid sequences of the collagenase gene. The amino acid composition predicted from the DNA sequence was similar to the chemically determined composition of purified collagenase reported previously. The analyses of both the DNA and amino acid sequences of the collagenase gene were rigorously performed, but we could not detect any significant sequence similarity to other collagenases.


1998 ◽  
Vol 72 (2) ◽  
pp. 1677-1682 ◽  
Author(s):  
Yukio Shirako

ABSTRACT RNA 2 of soil-borne wheat mosaic virus (SBWMV), the type species of the genus Furovirus, encodes a protein previously hypothesized to be initiated at an in-frame non-AUG codon upstream of the AUG initiation codon (nucleotide positions 334 to 336) for the 19-kDa capsid protein. Site-directed mutagenesis and in vitro transcription and translation analysis indicated that CUG (nucleotides 214 to 216) is the initiation codon for a protein with a calculated molecular mass of 25 kDa composed of a 40-amino-acid extension to the N terminus of the 19-kDa capsid protein. A stable deletion mutant, which was isolated after extensive passages of a wild-type SBWMV, contained a mixture of two deleted RNA 2’s, only one of which coded for the 25-kDa protein. The amino acid sequence of the N-terminal extension was moderately conserved and the CUG initiation codon was preserved among three SBWMV isolates from Japan and the United States. This amino acid sequence conservation, as well as the retention of expression of the 25-kDa protein in the stable deletion mutant, suggests that the 25-kDa protein is functional in the life cycle of SBWMV. This is the first report of a non-AUG translation initiation in a plant RNA virus genome.


Sign in / Sign up

Export Citation Format

Share Document