scholarly journals A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

1996 ◽  
Vol 16 (10) ◽  
pp. 5328-5334 ◽  
Author(s):  
N Méthot ◽  
M S Song ◽  
N Sonenberg

The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3.

2001 ◽  
Vol 268 (20) ◽  
pp. 5375-5385 ◽  
Author(s):  
Linda McKendrick ◽  
Simon J. Morley ◽  
Virginia M. Pain ◽  
Rosemary Jagus ◽  
Bhavesh Joshi

2007 ◽  
Vol 27 (6) ◽  
pp. 2384-2397 ◽  
Author(s):  
Jeanne M. Fringer ◽  
Michael G. Acker ◽  
Christie A. Fekete ◽  
Jon R. Lorsch ◽  
Thomas E. Dever

ABSTRACT The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.


1998 ◽  
Vol 334 (2) ◽  
pp. 463-467 ◽  
Author(s):  
Gert C. SCHEPER ◽  
Adri A. M. THOMAS ◽  
van Roel WIJK

Protein synthesis in rat H35 Reuber hepatoma cells is rapidly inhibited on heat shock. At mild heat-shock temperatures the main cause for inhibition is the inactivation of the guanine nucleotide exchange factor eukaryotic initiation factor 2B (eIF2B); under more severe heat-shock conditions the activity of several initiation factors is compromised. eIF2B is required for GDP/GTP exchange on eIF2, which delivers methionyl-tRNA to the 40 S ribosomal subunit. We have tried to elucidate the mechanism underlying the inactivation of eIF2B by assays in vitro. Incubation of cell extracts at 41 °C or higher led to the inactivation of eIF2B. In agreement with observations in cells exposed to mild heat shocks, the thermal inactivation of eIF2B could be ascribed to neither eIF2α phosphorylation nor the induction of another inhibitor. With the use of glycerol gradients we show that eIF2B forms aggregates in heat-treated extracts. Furthermore eIF2B activity is protected against heat shock in thermotolerant cells. Taken together, these results suggest a role for chaperones in the control of eIF2B activity.


1998 ◽  
Vol 18 (4) ◽  
pp. 2282-2297 ◽  
Author(s):  
Patrick R. Romano ◽  
Minerva T. Garcia-Barrio ◽  
Xiaolong Zhang ◽  
Qizhi Wang ◽  
Deborah R. Taylor ◽  
...  

ABSTRACT The human double-stranded RNA-dependent protein kinase (PKR) is an important component of the interferon response to virus infection. The activation of PKR is accompanied by autophosphorylation at multiple sites, including one in the N-terminal regulatory region (Thr-258) that is required for full kinase activity. Several protein kinases are activated by phosphorylation in the region between kinase subdomains VII and VIII, referred to as the activation loop. We show that Thr-446 and Thr-451 in the PKR activation loop are required in vivo and in vitro for high-level kinase activity. Mutation of either residue to Ala impaired translational control by PKR in yeast cells and COS1 cells and led to tumor formation in mice. These mutations also impaired autophosphorylation and eukaryotic initiation factor 2 subunit α (eIF2α) phosphorylation by PKR in vitro. Whereas the Ala-446 substitution substantially reduced PKR function, the mutant kinase containing Ala-451 was completely inactive. PKR specifically phosphorylated Thr-446 and Thr-451 in synthetic peptides in vitro, and mass spectrometry analysis of PKR phosphopeptides confirmed that Thr-446 is an autophosphorylation site in vivo. Substitution of Glu-490 in subdomain X of PKR partially restored kinase activity when combined with the Ala-451 mutation. This finding suggests that the interaction between subdomain X and the activation loop, described previously for MAP kinase, is a regulatory feature conserved in PKR. We found that the yeast eIF2α kinase GCN2 autophosphorylates at Thr-882 and Thr-887, located in the activation loop at exactly the same positions as Thr-446 and Thr-451 in PKR. Thr-887 was more critically required than was Thr-882 for GCN2 kinase activity, paralleling the relative importance of Thr-446 and Thr-451 in PKR. These results indicate striking similarities between GCN2 and PKR in the importance of autophosphorylation and the conserved Thr residues in the activation loop.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zechen Zhao ◽  
Weiming Chu ◽  
Yang Zheng ◽  
Chao Wang ◽  
Yuemei Yang ◽  
...  

Abstract Background Eukaryotic translation initiation factor 6 (eIF6), also known as integrin β4 binding protein, is involved in ribosome formation and mRNA translation, acting as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. Methods The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immunohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanical verification. Results We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promoted tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. Conclusion These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future.


2006 ◽  
Vol 26 (8) ◽  
pp. 2984-2998 ◽  
Author(s):  
Klaus H. Nielsen ◽  
Leos Valášek ◽  
Caroah Sykes ◽  
Antonina Jivotovskaya ◽  
Alan G. Hinnebusch

ABSTRACT We found that mutating the RNP1 motif in the predicted RRM domain in yeast eukaryotic initiation factor 3 (eIF3) subunit b/PRT1 (prt1-rnp1) impairs its direct interactions in vitro with both eIF3a/TIF32 and eIF3j/HCR1. The rnp1 mutation in PRT1 confers temperature-sensitive translation initiation in vivo and reduces 40S-binding of eIF3 to native preinitiation complexes. Several findings indicate that the rnp1 lesion decreases recruitment of eIF3 to the 40S subunit by HCR1: (i) rnp1 strongly impairs the association of HCR1 with PRT1 without substantially disrupting the eIF3 complex; (ii) rnp1 impairs the 40S binding of eIF3 more so than the 40S binding of HCR1; (iii) overexpressing HCR1-R215I decreases the Ts− phenotype and increases 40S-bound eIF3 in rnp1 cells; (iv) the rnp1 Ts− phenotype is exacerbated by tif32-Δ6, which eliminates a binding determinant for HCR1 in TIF32; and (v) hcr1Δ impairs 40S binding of eIF3 in otherwise wild-type cells. Interestingly, rnp1 also reduces the levels of 40S-bound eIF5 and eIF1 and increases leaky scanning at the GCN4 uORF1. Thus, the PRT1 RNP1 motif coordinates the functions of HCR1 and TIF32 in 40S binding of eIF3 and is needed for optimal preinitiation complex assembly and AUG recognition in vivo.


2001 ◽  
Vol 75 (24) ◽  
pp. 12141-12152 ◽  
Author(s):  
Daniel R. Gallie

ABSTRACT The 5′ leader of tobacco etch virus (TEV) genomic RNA directs efficient translation from the naturally uncapped viral mRNA. Two distinct regions within the TEV 143-nucleotide leader confer cap-independent translation in vivo even when present in the intercistronic region of a discistronic mRNA, indicating that the TEV leader contains an internal ribosome entry site (IRES). In this study, the requirements for TEV IRES activity were investigated. The TEV IRES enhanced translation of monocistronic or dicistronic mRNAs in vitro under competitive conditions, i.e., at high RNA concentration or in lysate partially depleted of eukaryotic initiation factor 4F (eIF4F) and eIFiso4F, the two cap binding complexes in plants. The translational advantage conferred by the TEV IRES under these conditions was lost when the lysate reduced in eIF4F and eIFiso4F was supplemented with eIF4F (or, to a lesser extent, eIFiso4F) but not when supplemented with eIF4E, eIFiso4E, eIF4A, or eIF4B. eIF4G, the large subunit of eIF4F, was responsible for the competitive advantage conferred by the TEV IRES. TEV IRES activity was enhanced moderately by the poly(A)-binding protein. These observations suggest that the TEV IRES directs cap-independent translation through a mechanism that involves eIF4G specifically.


2002 ◽  
Vol 367 (2) ◽  
pp. 359-368 ◽  
Author(s):  
Nilce N. HASHIMOTO ◽  
Larissa S. CARNEVALLI ◽  
Beatriz A. CASTILHO

The heterotrimeric eukaryotic initiation factor (eIF) 2 binds the initiator methionyl-tRNA in a GTP-dependent mode and delivers it to the 40S ribosomal subunit. In the present study, we have identified amino acid residues in eIF2β required for binding to eIF2γ in yeast. Alteration of six residues in the central region of eIF2β abolished this interaction, as determined by GST-pull down and two-hybrid assays, and leads to cell lethality. Substitution of 131Tyr and 132Ser by alanine residues (131YS), although abolishing the binding to eIF2γ in these assays, resulted in a functional but defective protein in vivo, imparting a temperature-sensitive growth phenotype to cells. A dramatically weakened association of this mutant protein with eIF2γ in vivo was shown by co-immunoprecipitation. The 131YS mutation in eIF2β allows translation to initiate at non-AUG codons, as defined by the ability of cells carrying an initiator codon mutation in the HIS4 mRNA to grow in the absence of histidine. The combination of this mutation with the 264Ser→Tyr alteration, a previously isolated suppressor of initiator codon mutations which has been shown to increase the spontaneous GTP hydrolysis in the ternary complex, caused a recessive lethality, suggesting additive defects. Thus the impaired interaction of these two subunits represents a novel type of defect in eIF2 function, providing in vivo evidence that the strength of interaction between eIF2β and eIF2γ defines the correct usage of the AUG codon for translation initiation.


2021 ◽  
Author(s):  
Zechen Zhao ◽  
Weming Chu ◽  
Yang Zheng ◽  
Chao Wang ◽  
Yuemei Yang ◽  
...  

Abstract Background: Eukaryotic translation initiation factor 6 (eIF6), also known as integrin β4 binding protein, is involved in the formation and translation of ribosomes and acts as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. Methods: The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immumohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanism verification.Results: We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration, and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promotes tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. Conclusions: This was the first report on the role and mechanism of eIF6 in OSCC. These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future.


2005 ◽  
Vol 277-279 ◽  
pp. 102-106
Author(s):  
Kee Ryeon Kang

Deoxyhypusine synthase (DHS) catalyzes the first step in the posttranslational synthesis of hypusine in the eukaryotic initiation factor 5A (eIF5A) precursor protein. As such, the phosphorylation of DHS by the protein kinase CK2 was investigated to define the role of DHS in the regulation of eIF5A in cells. The results showed that DHS was phosphorylated by CK2 in vivo as well as in vitro. The endogenous CK2 in HeLa cells and cell lysates was able to phosphorylate DHS and this modification was enhanced or decreased by the addition of CK2 effectors, such as polylysine, heparin, or poly (Glu, Tyr). A phosphoamino acid analysis of the enzyme revealed that the DHS was mainly phosphorylated into the Thr residue, with the remainder into the Ser residue. Therefore, it would appear that the phosphorylation of DHS was a CK2-dependent cellular event, thereby opening the path for possible regulation of the interaction with the eIF5A precursor for hypusine synthesis.


Sign in / Sign up

Export Citation Format

Share Document