scholarly journals Diacylglycerol generated during sphingomyelin synthesis is involved in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells

2003 ◽  
Vol 373 (3) ◽  
pp. 917-924 ◽  
Author(s):  
Jorge CERBÓN ◽  
Rosa del Carmen LÓPEZ-SÁNCHEZ

We have investigated the effects of inhibiting sphingomyelin (SM) biosynthesis on cellular diacylglycerol (DAG) content and protein kinase C (PKC) activation during growth initiation in Madin–Darby canine kidney cells. We utilized β-chloroalanine (BCA) to inactivate serine C-palmitoyltransferase, the first enzyme in the sphingolipid biosynthesis pathway. This inactivation prevented growth, but did not affect viability. When the inhibitor was replaced with fresh culture medium, the cells continued their proliferation in a normal way. BCA (2 mM) inhibited [32P]Pi, [3H]palmitic acid and [methyl-3H]choline incorporation into SM, but did not influence the synthesis of other major phospholipids. SM synthesis and DAG generation were decreased by 51% and 47.6% respectively. Particulate PKC activity was not observed in cells incubated with BCA, in contrast with a 5-fold increase in control cells. BCA inhibited 75% of the [3H]thymidine incorporation, and the cells were arrested before the S phase of the cell cycle. Moreover, exogenous d-erythrosphingosine restored SM synthesis, DAG generation and cell proliferation. These data indicate that the contribution of DAG generated during SM synthesis plays an important role in PKC activation and cell proliferation.

1990 ◽  
Vol 259 (4) ◽  
pp. F698-F703 ◽  
Author(s):  
D. W. Coyne ◽  
M. Mordhorst ◽  
A. R. Morrison

We assessed the effects of the peptide agonist, bradykinin (BK), and phorbol myristate acetate (PMA) on prostaglandin E2 (PGE2) production, cyclooxygenase (COX) activity and mass, and arachidonic acid (AA) release in Madin Darby canine kidney (MDCK) cells. PMA stimulated PGE2 production by increasing both AA release and the activity of COX. Using [35S]methionine labeling and immunoprecipitation, we demonstrated that the increased COX activity is due to new COX synthesis. Actinomycin D and cycloheximide blocked the PMA-stimulated COX activity but not AA release. Both PMA-stimulated AA release and COX activity were reduced by the protein kinase C inhibitor staurosporine (STP). Glucocorticoids failed to alter PMA- or BK-stimulated PGE2 production was reduced by STP, indicating BK acts in part through protein kinase C activation. BK increased PGE2 production in PMA-treated cells, suggesting a protein kinase C-independent mechanism of action as well. BK did not stimulate any change in COX activity. We conclude that in MDCK cells PMA, but not BK, can stimulate both AA release and COX synthesis. Stimulation of COX synthesis requires either prolonged activation of protein kinase C and/or an additional nonprotein kinase C-mediated effect of PMA.


2001 ◽  
pp. 651-658 ◽  
Author(s):  
C Grundker ◽  
L Schlotawa ◽  
V Viereck ◽  
G Emons

OBJECTIVE: The expression of luteinizing hormone-releasing hormone (LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumours, including cancers of the endometrium. The signalling pathway through which LHRH acts in endometrial cancer is distinct from that in pituitary gonadotrophs. The LHRH receptor interacts with the mitogenic signal transduction of growth factor receptors via activation of a phosphotyrosine phosphatase, resulting in down-regulation of cancer cell proliferation. In addition, LHRH activates nucleus factor kappaB (NFkappaB) and protects the cancer cells from apoptosis. This study was conducted to investigate additional signalling mechanisms of the LHRH receptor cooperating with NFkappaB in endometrial cancer cells. DESIGN: The LHRH agonist triptorelin-induced activator protein-1 (AP-1) activation was analysed using a pAP-1-SEAP reporter gene assay. Expression of c-jun mRNA was quantified using quantitative reverse transcription (RT)-PCR. c-Jun N-terminal kinase (JNK) activity was measured by quantification of phosphorylated c-Jun protein. RESULTS: Treatment of Ishikawa and Hec-1A human endometrial cancer cells with 100 nM triptorelin resulted in a 3.1-fold and 3.5-fold activation of AP-1 respectively (P<0.05). If the cells had been made quiescent, treatment with triptorelin (100 nM) resulted in a 41.7-fold and 48.6-fold increase of AP-1 activation respectively (P<0.001). This effect was completely blocked by simultaneous treatment with pertussis toxin (PTX). A 17.6-fold and 17.3-fold increase of c-jun mRNA expression respectively (P<0.001) was obtained after 20 min of stimulation with triptorelin (100 nM). Treatment with 1 nM triptorelin resulted in a 12.5-fold or an 11.9-fold increase, and treatment with 10 pM triptorelin resulted in a 6.5-fold or a 5.2-fold increase of maximal c-jun mRNA expression respectively (P<0.001). Maximal c-Jun phosphorylation (68.5-fold and 60.2-fold, respectively, P<0.001) was obtained after 90 min incubation with triptorelin (100 nM). CONCLUSIONS: These results suggest that the LHRH agonist triptorelin stimulates the activity of AP-1 in human endometrial cancer cells mediated through PTX-sensitive G-protein alphai. In addition, triptorelin activates JNK, known to activate AP-1. In earlier investigations we have shown that triptorelin does not activate phospholipase and protein kinase C (PKC) in endometrial cancer cells. In addition, it has been demonstrated that triptorelin inhibits growth factor-induced mitogen activated protein kinase (MAPK, ERK) activity. Thus triptorelin-induced activation of the JNK/AP-1 pathway in endometrial cancer cells is independent of the known AP-1 activators, PKC or MAPK (ERK).


2002 ◽  
Vol 283 (2) ◽  
pp. C489-C499 ◽  
Author(s):  
Tam Luan Le ◽  
Shannon R. Joseph ◽  
Alpha S. Yap ◽  
Jennifer L. Stow

E-cadherin is a major component of adherens junctions in epithelial cells. We showed previously that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. In the present study, we investigated the potential role of protein kinase C (PKC) in regulating the trafficking of surface E-cadherin in Madin-Darby canine kidney cells. Using surface biotinylation and immunofluorescence, we found that treatment of cells with phorbol esters increased the rate of endocytosis of E-cadherin, resulting in accumulation of E-cadherin in apically localized early or recycling endosomes. The recycling of E-cadherin back to the surface was also decreased in the presence of phorbol esters. Phorbol ester-induced endocytosis of E-cadherin was blocked by specific inhibitors, implicating novel PKC isozymes, such as PKC-ε in this pathway. PKC activation led to changes in the actin cytoskeleton facilitating E-cadherin endocytosis. Depolymerization of actin increased endocytosis of E-cadherin, whereas the PKC-induced uptake of E-cadherin was blocked by the actin stabilizer jasplakinolide. Our findings show that PKC regulates vital steps of E-cadherin trafficking, its endocytosis, and its recycling.


Sign in / Sign up

Export Citation Format

Share Document