pkc isozymes
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 13)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 22 (23) ◽  
pp. 12650
Author(s):  
Khalida Perveen ◽  
Alex Quach ◽  
Michael J. Stark ◽  
Susan L. Prescott ◽  
Simon C. Barry ◽  
...  

Cord blood T cells (CBTC) from a proportion of newborns express low/deficient levels of some protein kinase C (PKC) isozymes, with low levels of PKCζ correlating with increased risk of developing allergy and associated decrease in interferon-gamma (IFN-γ) producing T cells. Interestingly, these lower levels of PKCζ were increased/normalized by supplementing women during pregnancy with n-3 polyunsaturated fatty acids. However, at present, we have little understanding of the transient nature of the deficiency in the neonate and how PKCζ relates to other PKC isozymes and whether their levels influence maturation into IFN-γ producing T cells. There is also no information on PKCζ isozyme levels in the T cell subpopulations, CD4+ and CD8+ cells. These issues were addressed in the present study using a classical culture model of neonatal T cell maturation, initiated with phytohaemagglutinin (PHA) and recombinant human interleukin-2 (rhIL-2). Of the isozymes evaluated, PKCζ, β2, δ, μ, ε, θ and λ/ι were low in CBTCs. The PKC isozyme deficiencies were also found in the CD4+ and CD8+ T cell subset levels of the PKC isozymes correlated between the two subpopulations. Examination of changes in the PKC isozymes in these deficient cells following addition of maturation signals showed a significant increase in expression within the first few hours for PKCζ, β2 and μ, and 1–2 days for PKCδ, ε, θ and λ/ι. Only CBTC PKCζ isozyme levels correlated with cytokine production, with a positive correlation with IFN-γ, interleukin (IL)-2 and tumour necrosis factor-alpha (TNF), and a negative association with IL-9 and IL-10. The findings reinforce the specificity in using CBTC PKCζ levels as a biomarker for risk of allergy development and identify a period in which this can be potentially ‘corrected’ after birth.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1748
Author(s):  
Takahito Kawano ◽  
Junichi Inokuchi ◽  
Masatoshi Eto ◽  
Masaharu Murata ◽  
Jeong-Hun Kang

Protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinase, is classed into three subfamilies based on their structural and activation characteristics: conventional or classic PKC isozymes (cPKCs; α, βI, βII, and γ), novel or non-classic PKC isozymes (nPKCs; δ, ε, η, and θ), and atypical PKC isozymes (aPKCs; ζ, ι, and λ). PKC inhibitors and activators are used to understand PKC-mediated intracellular signaling pathways and for the diagnosis and treatment of various PKC-associated diseases, such as cancers, neurological diseases, cardiovascular diseases, and infections. Many clinical trials of PKC inhibitors in cancers showed no significant clinical benefits, meaning that there is a limitation to design a cancer therapeutic strategy targeting PKC alone. This review will focus on the activators and inhibitors of PKC and their applications in clinical trials.


2021 ◽  
Author(s):  
Gema Lorden Losada ◽  
Alexandra C Newton

Protein Kinase C (PKC) isozymes are tightly regulated kinases that transduce a myriad of signals from receptor-mediated hydrolysis of membrane phospholipids. They play an important role in brain physiology, and dysregulation of PKC activity is associated with neurodegeneration. Gain-of-function mutations in PKCα are associated with Alzheimer’s disease and mutations in PKCγ cause spinocerebellar ataxia type 14. This article presents an overview of the role of the conventional PKCα and PKCγ in neurodegeneration and proposes repurposing PKC inhibitors, which failed in clinical trials for cancer, for the treatment of neurodegenerative diseases.


2021 ◽  
Author(s):  
Lesley A Colgan ◽  
Paula Parra-Bueno ◽  
Heather L. Holman ◽  
Mariah F Calubag ◽  
Jaime A Misler ◽  
...  

The activity-dependent plasticity of synapses is believed to be the cellular basis of learning. These synaptic changes are mediated through the coordination of local biochemical reactions in synapses and changes in gene transcription in the nucleus to modulate neuronal circuits and behavior. The protein kinase C (PKC) family of isozymes has long been established as critical for synaptic plasticity. However, due to a lack of suitable isozyme-specific tools, the role of the novel subfamily of PKC isozymes is largely unknown. Here, through the development of FLIM-FRET activity sensors, we investigate novel PKC isozymes in synaptic plasticity in mouse CA1 pyramidal neurons. We find that PKCδ is activated downstream of TrkB and that the spatiotemporal nature of its activation depends on the plasticity stimulation. In response to single spine plasticity, PKCδ is activated primarily in the stimulated spine and is required for local expression of plasticity. However, in response to multi-spine stimulation, a long-lasting and spreading activation of PKCδ scales with the number of spines stimulated and, by regulating CREB activity, couples spine plasticity to transcription in the nucleus. Thus, PKCδ plays a dual functional role in facilitating synaptic plasticity.


2021 ◽  
Vol 22 (11) ◽  
pp. 5527
Author(s):  
Mohammad Mojtaba Sadeghi ◽  
Mohamed F. Salama ◽  
Yusuf A. Hannun

Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 381
Author(s):  
Noelia Geribaldi-Doldán ◽  
Irati Hervás-Corpión ◽  
Ricardo Gómez-Oliva ◽  
Samuel Domínguez-García ◽  
Félix A. Ruiz ◽  
...  

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence. Some publications have pointed out the role of glioma stem cells (GSCs) as the origin of GBM. These cells, with characteristics of neural stem cells (NSC) present in physiological neurogenic niches, have been proposed as being responsible for the high resistance of GBM to current treatments such as temozolomide (TMZ). The protein Kinase C (PKC) family members play an essential role in transducing signals related with cell cycle entrance, differentiation and apoptosis in NSC and participate in distinct signaling cascades that determine NSC and GSC dynamics. Thus, PKC could be a suitable druggable target to treat recurrent GBM. Clinical trials have tested the efficacy of PKCβ inhibitors, and preclinical studies have focused on other PKC isozymes. Here, we discuss the idea that other PKC isozymes may also be involved in GBM progression and that the development of a new generation of effective drugs should consider the balance between the activation of different PKC subtypes.


Author(s):  
Ghanshyam N Pandey ◽  
Anuradha Sharma ◽  
Hooriyah S Rizavi ◽  
Xinguo Ren

Abstract Background Several lines of evidence suggest the abnormalities of protein kinase C (PKC) signaling system in mood disorders and suicide based primarily on the studies of PKC and its isozymes in the platelets and postmortem brain of depressed and suicidal subjects. In this study we examined the role of PKC isozymes in depression and suicide. Methods We determined the protein and mRNA expression of various PKC isozymes in the prefrontal cortical region [Brodmann area 9 (BA9)] in 24 normal control (NC) subjects, 24 depressed suicide (DS) subjects and 12 depressed non-suicide (DNS) subjects. The levels of mRNA in the prefrontal cortex (PFC) were determined by qRT-PCR and the protein expression was determined by Western blotting. Results We observed a significant decrease in mRNA expression of PKCα, PKCβI, PKCδ and PKCε and decreased protein expression either in the membrane or the cytosol fraction of PKC isozymes - PKCα, PKCβI, PKCβII and PKCδ in DS and DNS subjects compared with NC subjects. Conclusions The current study provides detailed evidence of specific dysregulation of certain PKC isozymes in the postmortem brain of DS and DNS subjects and further supports earlier evidence for the role of PKC in the platelets and brain of adult and teenage depressed and suicidal population. This comprehensive study may lead to further knowledge of the involvement of PKC in the pathophysiology of depression and suicide.


Author(s):  
Samuel Domínguez-García ◽  
Ricardo Gómez-Oliva ◽  
Noelia Geribaldi-Doldán ◽  
Carmen Hierro-Bujalance ◽  
Marta Sendra ◽  
...  

AbstractHippocampal neurogenesis has widely been linked to memory and learning performance. New neurons generated from neural stem cells (NSC) within the dentate gyrus of the hippocampus (DG) integrate in hippocampal circuitry participating in memory tasks. Several neurological and neuropsychiatric disorders show cognitive impairment together with a reduction in DG neurogenesis. Growth factors secreted within the DG promote neurogenesis. Protein kinases of the protein kinase C (PKC) family facilitate the release of several of these growth factors, highlighting the role of PKC isozymes as key target molecules for the development of drugs that induce hippocampal neurogenesis. PKC activating diterpenes have been shown to facilitate NSC proliferation in neurogenic niches when injected intracerebroventricularly. We show in here that long-term administration of diterpene ER272 promotes neurogenesis in the subventricular zone and in the DG of mice, affecting neuroblasts differentiation and neuronal maturation. A concomitant improvement in learning and spatial memory tasks performance can be observed. Insights into the mechanism of action reveal that this compound facilitates classical PKCα activation and promotes transforming growth factor alpha (TGFα) and, to a lesser extent, neuregulin release. Our results highlight the role of this molecule in the development of pharmacological drugs to treat neurological and neuropsychiatric disorders associated with memory loss and a deficient neurogenesis.


2020 ◽  
Vol 10 ◽  
Author(s):  
Ann Rita Halvorsen ◽  
Mads Haugland Haugen ◽  
Åsa Kristina Öjlert ◽  
Marius Lund-Iversen ◽  
Lars Jørgensen ◽  
...  

IntroductionProtein expression is deregulated in cancer, and the proteomic changes observed in lung cancer may be a consequence of mutations in essential genes. The purpose of this study was to identify protein expression associated with prognosis in lung cancers stratified by smoking status, molecular subtypes, and EGFR-, TP53-, and KRAS-mutations.MethodsWe performed profiling of 295 cancer-relevant phosphorylated and non-phosphorylated proteins, using reverse phase protein arrays. Biopsies from 80 patients with operable lung adenocarcinomas were analyzed for protein expression and association with relapse free survival (RFS) were studied.ResultsSpearman’s rank correlation analysis identified 46 proteins with significant association to RFS (p<0.05). High expression of protein kinase C (PKC)-α and the phosporylated state of PKC-α, PKC-β, and PKC-δ, showed the strongest positive correlation to RFS, especially in the wild type samples. This was confirmed in gene expression data from 172 samples. Based on protein expression, unsupervised hierarchical clustering separated the samples into four subclusters enriched with the molecular subtypes terminal respiratory unit (TRU), proximal proliferative (PP), and proximal inflammatory (PI) (p=0.0001). Subcluster 2 contained a smaller cluster (2a) enriched with samples of the subtype PP, low expression of the PKC isozymes, and associated with poor RFS (p=0.003) compared to the other samples. Low expression of the PKC isozymes in the subtype PP and a reduced relapse free survival was confirmed with The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD) samples.ConclusionThis study identified different proteins associated with RFS depending on molecular subtype, smoking- and mutational-status, with PKC-α, PKC-β, and PKC-δ showing the strongest correlation.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 553 ◽  
Author(s):  
Humeyra Nur Kaleli ◽  
Ebru Ozer ◽  
Veysel Ogulcan Kaya ◽  
Ozlem Kutlu

Protein kinase C (PKC) isozymes are members of the Serine/Threonine kinase family regulating cellular events following activation of membrane bound phospholipids. The breakdown of the downstream signaling pathways of PKC relates to several disease pathogeneses particularly neurodegeneration. PKC isozymes play a critical role in cell death and survival mechanisms, as well as autophagy. Numerous studies have reported that neurodegenerative disease formation is caused by failure of the autophagy mechanism. This review outlines PKC signaling in autophagy and neurodegenerative disease development and introduces some polyphenols as effectors of PKC isozymes for disease therapy.


Sign in / Sign up

Export Citation Format

Share Document