scholarly journals Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study

2004 ◽  
Vol 382 (3) ◽  
pp. 877-884 ◽  
Author(s):  
Bruno GUIGAS ◽  
Dominique DETAILLE ◽  
Christiane CHAUVIN ◽  
Cécile BATANDIER ◽  
Frédéric De OLIVEIRA ◽  
...  

Metformin, a drug widely used in the treatment of Type II diabetes, has recently received attention owing to new findings regarding its mitochondrial and cellular effects. In the present study, the effects of metformin on respiration, complex 1 activity, mitochondrial permeability transition, cytochrome c release and cell death were investigated in cultured cells from a human carcinoma-derived cell line (KB cells). Metformin significantly decreased respiration both in intact cells and after permeabilization. This was due to a mild and specific inhibition of the respiratory chain complex 1. In addition, metformin prevented to a significant extent mitochondrial permeability transition both in permeabilized cells, as induced by calcium, and in intact cells, as induced by the glutathione-oxidizing agent t-butyl hydroperoxide. This effect was equivalent to that of cyclosporin A, the reference inhibitor. Finally, metformin impaired the t-butyl hydroperoxide-induced cell death, as judged by Trypan Blue exclusion, propidium iodide staining and cytochrome c release. We propose that metformin prevents the permeability transition-related commitment to cell death in relation to its mild inhibitory effect on complex 1, which is responsible for a decreased probability of mitochondrial permeability transition.

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Adeola Oluwakemi Olowofolahan ◽  
Obinna Matthew Paulinus ◽  
Heritage Mojisola Dare ◽  
Olufunso Olabode Olorunsogo

Abstract Background Some antitumor or anticancer agents have been shown to execute cell death by induction of mitochondrial permeability transition (mPT) pore opening in order to elicit their chemotherapeutic effect. Therefore, this study investigated the effect of metformin on cell death via rat uterus mPT pore and estradiol benzoate-induced uterine defect and associated pathophysiological disorder in female rat. Mitochondria were isolated using differential centrifugation. The mPT pore opening, cytochrome c release and mitochondrial ATPase activity were determined spectrophotometrically. Caspases 9 and 3 activities, MDA and estradiol levels and SOD, GSH activities, were determined using ELISA technique. Histological and histochemical assessments of the uterine section were carried out using standard methods. Results Metformin at concentrations 10–90 μg/mL, showed no significant effect on mPT pore opening, mATPase activity and release of cytochrome c. However, oral administration of metformin caused mPT pore opening, enhancement of mATPase activity and activation of caspases 9 and 3 significantly at 300 and 400 mg/kg. Metformin protected against estradiol benzoate (EB)-induced uterine defect and other associated pathophysiological disorder. It also improved the antioxidant defense system. The histological evaluation revealed the protective effect of metformin on the cellular architecture of the uterus while the histochemical examination showed severe hyperplasia in the uterine section of EB-treated rats, remarkably reversed by metformin co-treatment. Conclusion This study suggests that metformin at high doses induces apoptosis via rat uterus mPT pore opening and protects against EB-induced uterine defect (hyperplasia) and associated pathophysiological disorder.


1998 ◽  
Vol 143 (1) ◽  
pp. 217-224 ◽  
Author(s):  
Robert Eskes ◽  
Bruno Antonsson ◽  
Astrid Osen-Sand ◽  
Sylvie Montessuit ◽  
Christoph Richter ◽  
...  

Bcl-2 family members either promote or repress programmed cell death. Bax, a death-promoting member, is a pore-forming, mitochondria-associated protein whose mechanism of action is still unknown. During apoptosis, cytochrome C is released from the mitochondria into the cytosol where it binds to APAF-1, a mammalian homologue of Ced-4, and participates in the activation of caspases. The release of cytochrome C has been postulated to be a consequence of the opening of the mitochondrial permeability transition pore (PTP). We now report that Bax is sufficient to trigger the release of cytochrome C from isolated mitochondria. This pathway is distinct from the previously described calcium-inducible, cyclosporin A–sensitive PTP. Rather, the cytochrome C release induced by Bax is facilitated by Mg2+ and cannot be blocked by PTP inhibitors. These results strongly suggest the existence of two distinct mechanisms leading to cytochrome C release: one stimulated by calcium and inhibited by cyclosporin A, the other Bax dependent, Mg2+ sensitive but cyclosporin insensitive.


Sign in / Sign up

Export Citation Format

Share Document