scholarly journals Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation

2006 ◽  
Vol 395 (3) ◽  
pp. 509-515 ◽  
Author(s):  
Zhong-liang Zheng ◽  
Mao-qing Ye ◽  
Zhen-yu Zuo ◽  
Zhi-gang Liu ◽  
Keng-chang Tai ◽  
...  

Hydrogen bonds occurring in the catalytic triad (Asp32, His64 and Ser221) and the oxyanion hole (Asn155) are very important to the catalysis of peptide bond hydrolysis by serine proteases. For the subtilisin NK (nattokinase), a bacterial serine protease, construction and analysis of a three-dimensional structural model suggested that several hydrogen bonds formed by four residues function to stabilize the transition state of the hydrolysis reaction. These four residues are Ser33, Asp60, Ser62 and Thr220. In order to remove the effect of these hydrogen bonds, four mutants (Ser33→Ala33, Asp60→Ala60, Ser62→Ala62, and Thr220→Ala220) were constructed by site-directed mutagenesis. The results of enzyme kinetics indicated that removal of these hydrogen bonds increases the free-energy of the transition state (ΔΔGT). We concluded that these hydrogen bonds are more important for catalysis than for binding the substrate, because removal of these bonds mainly affects the kcat but not the Km values. A substrate, SUB1 (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide), was used during enzyme kinetics experiments. In the present study we have also shown the results of FEP (free-energy perturbation) calculations with regard to the binding and catalysis reactions for these mutant subtilisins. The calculated difference in FEP also suggested that these four residues are more important for catalysis than binding of the substrate, and the simulated values compared well with the experimental values from enzyme kinetics. The results of MD (molecular dynamics) simulations further demonstrated that removal of these hydrogen bonds partially releases Asp32, His64 and Asn155 so that the stability of the transition state decreases. Another substrate, SUB2 (H-D-Val-Leu-Lys-p-nitroanilide), was used for FEP calculations and MD simulations.

2016 ◽  
Vol 15 (06) ◽  
pp. 1650054 ◽  
Author(s):  
Seifollah Jalili ◽  
Mina Maddah ◽  
Jeremy Schofield

Cisplatin and oxaliplatin are two widely-used anti-cancer drugs which covalently bind to a same location in DNA strands. Platinum agents make intrastrand and interstrand cross-links with the N7 atoms of guanine nucleotides which prevent DNA from polymerization by causing a distortion in the double helix. Molecular dynamics simulations and free energy calculations were carried out to investigate the binding of two platinum-based anti-cancer drugs with DNA. We compared the binding of these drugs which differ in their carrier ligands, and hence their potential interactions with DNA. When a platinum agent binds to nucleotides, it causes a high amount of deformation in DNA structure. To find the extent of deformation, torsion angles and base pair and groove parameters of DNA were considered. These parameters were compared with normal B-DNA which was considered as the undamaged DNA. The formation of hydrogen bonds between drugs and DNA nucleotides was examined in solution. It was shown that oxaliplatin forms more hydrogen bonds than cisplatin. Our results confirm that the structure of the platinated DNA rearranges significantly and cisplatin tries to deform DNA more than oxaliplatin. The binding free energies were also investigated to understand the affinities, types and the contributions of interactions between drugs and DNA. It was concluded that oxaliplatin tendency for binding to DNA is more than cisplatin in solvent environment. The binding free energy was calculated based on the MM/PBSA and MM/GBSA methods and the results of QM/MM calculations verified them.


1999 ◽  
Vol 44 (8) ◽  
pp. 708-711 ◽  
Author(s):  
Yan Cui ◽  
Lunjiang Ling ◽  
Runsheng Chen ◽  
Longchuan Bai ◽  
Jiangang Yuan ◽  
...  

2016 ◽  
Vol 35 (8) ◽  
pp. 1710-1728 ◽  
Author(s):  
Alireza Farasat ◽  
Fatemeh Rahbarizadeh ◽  
Ghader Hosseinzadeh ◽  
Sharareh Sajjadi ◽  
Mehdi Kamali ◽  
...  

2012 ◽  
Vol 519 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Elisângela Aparecida Aragão ◽  
Davi Serradella Vieira ◽  
Lucimara Chioato ◽  
Tatiana Lopes Ferreira ◽  
Marcos Roberto Lourenzoni ◽  
...  

Author(s):  
Balaji Selvam ◽  
Ya-Chi Yu ◽  
Liqing Chen ◽  
Diwakar Shukla

<p>The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane. However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as 1 for the glucose the transport mechanism. SWEETs undergoes structural transition to outward-facing (OF), Occluded (OC) and inward-facing (IF) and strongly support alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly same for OF, OC and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and act as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.</p>


Sign in / Sign up

Export Citation Format

Share Document