Angiopoietin-1-induced ubiquitylation of Tie2 by c-Cbl is required for internalization and degradation

2009 ◽  
Vol 423 (3) ◽  
pp. 375-380 ◽  
Author(s):  
Christina Wehrle ◽  
Paul Van Slyke ◽  
Daniel J. Dumont

Tie2 [where ‘Tie’ is an acronym from tyrosine kinase with Ig and EGF (epidermal growth factor) homology domains] is a receptor tyrosine kinase expressed predominantly on the surface of endothelial cells. Activated by its ligands, the angiopoietins, Tie2 initiates signalling pathways that modulate vascular stability and angiogenesis. Deletion of either the Tie2 or Ang1 (angiopoietin-1) gene in mice results in lethal vascular defects, signifying their importance in vascular development. The mechanism employed by the Tie2 signalling machinery to attenuate or cause receptor trafficking is not well defined. Stimulation of Tie2-expressing cells with Ang1 results in its ubiquitylation, suggesting that this may provide the necessary signal for receptor turnover. Using a candidate molecule approach, we demonstrate that Tie2 co-immunoprecipitates with c-Cbl in an Ang1-dependent manner and its ubiquitylation can be inhibited by the dominant-interfering molecule v-Cbl (a viral form of c-Cbl that contains only the tyrosine kinase-binding domain region). Inhibition of the Tie2–Cbl interaction by overexpression of v-Cbl blocks ligand-induced Tie2 internalization and degradation. In summary, our results illustrate that c-Cbl interacts with the Tie2 signalling complex in a stimulation-dependent manner, and that this interaction is required for Tie2 ubiquitylation, internalization and degradation.

2002 ◽  
Vol 22 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
Christopher D. Kontos ◽  
Eugene H. Cha ◽  
John D. York ◽  
Kevin G. Peters

ABSTRACT Tie1 is an orphan receptor tyrosine kinase that is expressed almost exclusively in endothelial cells and that is required for normal embryonic vascular development. Genetic studies suggest that Tie1 promotes endothelial cell survival, but other studies have suggested that the Tie1 kinase has little to no activity, and Tie1-mediated signaling pathways are unknown. To begin to study Tie1 signaling, a recombinant glutathione S-transferase (GST)-Tie1 kinase fusion protein was produced in insect cells and found to be autophosphorylated in vitro. GST-Tie1 but not a kinase-inactive mutant associated with a recombinant p85 SH2 domain protein in vitro, suggesting that Tie1 might signal through phosphatidylinositol (PI) 3-kinase. To study Tie1 signaling in a cellular context, a c-fms-Tie1 chimeric receptor (fTie1) was expressed in NIH 3T3 cells. Ligand stimulation of fTie1 resulted in Tie1 autophosphorylation and downstream activation of PI 3-kinase and Akt. Stimulation of fTie1-expressing cells potently inhibited UV irradiation-induced apoptosis in a PI 3-kinase-dependent manner. Moreover, both Akt phosphorylation and inhibition of apoptosis were abrogated by mutation of tyrosine 1113 to phenylalanine, suggesting that this residue is an important PI 3-kinase binding site. These findings are the first biochemical demonstration of a signal transduction pathway and corresponding cellular function for Tie1, and the antiapoptotic effect of Tie1 is consistent with the results of previous genetic studies.


2021 ◽  
pp. 030089162110200
Author(s):  
Haci M. Turk ◽  
Mustafa Adli ◽  
Melih Simsek ◽  
Altay Aliyev ◽  
Mehmet Besiroglu

Background: Epidermal growth factor receptor tyrosine kinase inhibitors are effectively being used in the treatment of non-small cell lung cancer. Although most of their adverse effects are mild to moderate, they occasionally can cause life-threatening interstitial lung disease. We aimed to present a case of lung adenocarcinoma successfully re-treated with erlotinib after recovery with effective treatment of erlotinib-induced interstitial lung disease. Case description: A 54-year-old nonsmoking woman was diagnosed with metastatic adenocarcinoma of the lung. After progression with first-line chemotherapy, erlotinib 150 mg daily was initiated. On the 45th day of erlotinib treatment, interstitial lung disease occurred and erlotinib was discontinued. Clinical improvement was achieved with dexamethasone treatment and erlotinib was re-initiated. Ten weeks after re-initiation of erlotinib, 100 mg daily partial response was observed. Conclusions: Incidence of interstitial lung disease is higher in men, smokers, and patients with pulmonary fibrosis. Interstitial lung disease radiologically causes ground-glass opacity and consolidation. The physician should quickly evaluate new respiratory symptoms in patients treated with epidermal growth factor receptor tyrosine kinase inhibitors, discontinue the epidermal growth factor receptor tyrosine kinase inhibitor treatment, and initiate corticosteroids if clinical diagnosis is interstitial lung disease.


Sign in / Sign up

Export Citation Format

Share Document