scholarly journals Proton translocation by cytochrome oxidase in (antimycin + myxothiazol)-treated rat liver mitochondria using ferrocyanide or hexammineruthenium as electron donor

1986 ◽  
Vol 236 (1) ◽  
pp. 15-21 ◽  
Author(s):  
I C West ◽  
R Mitchell ◽  
A J Moody ◽  
P Mitchell

When O2 was injected into an anaerobic suspension of valinomycin-treated rat liver mitochondria inhibited with rotenone, antimycin, and myxothiazol, a small amount of O2 (0.23-0.33 ng-atom of O/mg of protein) was reduced extremely rapidly (within the 2 s time-resolution of the oxygen electrode). The subsequent steady-state rate of flow of electrons to oxygen was very low [less than 3 nequiv. X s-1 X (g of mitochondrial protein)-1]. In the presence of valinomycin there was a rapid ejection of protons synchronous with the rapid phase of O2 consumption corresponding to 0.38-0.61 nequiv. of H+ X (mg of mitochondrial protein)-1. When valinomycin was replaced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) there was a rapid alkalification of the medium corresponding to 0.20-0.42 nequiv. of H+ X (mg of mitochondrial protein)-1. When 2 mM-Fe(CN)6(4-) was present to re-reduce endogenous cytochrome c, O2 consumption was still biphasic but the second phase of O2 consumption was very much more rapid [600 nequiv. X s-1 X (g of protein)-1], and resulted in the virtually complete consumption of the O2 in the pulse within 4 s. With 60 microM-Ru(NH3)6(2+) as reductant, O2 consumption was even faster [1200 nequiv. X s-1 X (g of protein)-1]. In a medium containing 150 mM-choline chloride with Ru(NH3)6(2+) as reductant, the proton per reducing equivalent stoichiometry (delta H+O/e-) was +0.95 in the presence of valinomycin and −0.94 in the presence of FCCP. In choline chloride medium containing Ru(NH3)6(2+) and valinomycin, there was an uptake of K+ ions corresponding to 1.86 K+/e-. It is concluded that nearly 1 proton is translocated outwards through cytochrome oxidase per oxidizing equivalent injected in this medium. In low ionic strength sucrose-based medium, with Ru(NH3)6(2+) as reductant, delta H+O/e- was 1.05 in the presence of valinomycin, and −0.71 in the presence of FCCP. It is concluded that the translocation of protons is accompanied by net acid production in this medium.

1982 ◽  
Vol 206 (2) ◽  
pp. 419-421 ◽  
Author(s):  
B D Price ◽  
M D Brand

NN'-Dicyclohexylcarbodi-imide at low concentrations decreases the H+/2e ratio for rat liver mitochondria over the span succinate to oxygen from 5.9 +/- 0.3 (mean +/- S.E.M.) to 4.0 +/- 0.1 and for the cytochrome b-c1 complex from 3.8 +/- 0.2 to 1.9 +/- 0.1, but has little effect on the H+/2e ratio of cytochrome oxidase. The decrease in stoicheiometry is due, not to uncoupling or inhibition of electron transport, but to inhibition of proton translocation. NN'-Dicyclohexylcarbodi-imide thus ‘decouples’ proton translocation in the cytochrome b-c1 complex.


1957 ◽  
Vol 188 (3) ◽  
pp. 547-549 ◽  
Author(s):  
Attilio Canzanelli ◽  
Rhea Sossen ◽  
David Rapport

Five per cent suspensions of rat liver mitochondria were irradiated with ultraviolet light for varying periods of time and the succinoxidase and cytochrome oxidase activity were determined. Both succinoxidase and cytochrome oxidase activity were reduced by irradiation with ultraviolet. The order of magnitude of the ultraviolet energy necessary to produce such changes is much less than that necessary to produce chemical changes in nucleic acid derivatives, and approaches the amount which has been shown to produce lethal and other biological effects.


1978 ◽  
Vol 176 (3) ◽  
pp. 705-714 ◽  
Author(s):  
Veronica Prpić ◽  
Terry L. Spencer ◽  
Fyfe L. Bygrave

1. Mitochondria isolated from rat liver by centrifugation of the homogenate in buffered iso-osmotic sucrose at between 4000 and 8000g-min, 1h after the administration in vivo of 30μg of glucagon/100g body wt., retain Ca2+ for over 45min after its addition at 100nmol/mg of mitochondrial protein in the presence of 2mm-Pi. In similar experiments, but after the administration of saline (0.9% NaCl) in place of glucagon, Ca2+ is retained for 6–8min. The ability of glucagon to enhance Ca2+ retention is completely prevented by co-administration of 4.2mg of puromycin/100g body wt. 2. The resting rate of respiration after Ca2+ accumulation by mitochondria from glucagon-treated rats remains low by contrast with that from saline-treated rats. Respiration in the latter mitochondria increased markedly after the Ca2+ accumulation, reflecting the uncoupling action of the ion. 3. Concomitant with the enhanced retention of Ca2+ and low rates of resting respiration by mitochondria from glucagon-treated rats was an increased ability to retain endogenous adenine nucleotides. 4. An investigation of properties of mitochondria known to influence Ca2+ transport revealed a significantly higher concentration of adenine nucleotides but not of Pi in those from glucagon-treated rats. The membrane potential remained unchanged, but the transmembrane pH gradient increased by approx. 10mV, indicating increased alkalinity of the matrix space. 5. Depletion of endogenous adenine nucleotides by Pi treatment in mitochondria from both glucagon-treated and saline-treated rats led to a marked diminution in ability to retain Ca2+. The activity of the adenine nucleotide translocase was unaffected by glucagon treatment of rats in vivo. 6. Although the data are consistent with the argument that the Ca2+-translocation cycle in rat liver mitochondria is a target for glucagon action in vivo, they do not permit conclusions to be drawn about the molecular mechanisms involved in the glucagon-induced alteration to this cycle.


1977 ◽  
Vol 166 (1) ◽  
pp. 39-47 ◽  
Author(s):  
S J Gatley ◽  
H S A Sherratt

1. Rat liver mitochondria make hippurate at up to 4 nmol/min per mg of protein. The rate of synthesis supported by oxidation of glutamate with exogenous Pi present is identical with that supported by ATP plus oligomycin. Lower rates were obtained with other respiratory substrates, and when glutamate was used without Pi. 2. A matrix localization for hippurate synthesis is indicated by the latency of benzoyl-CoA synthetase and glycine N-acyltransferase to their extramitochondrial substrates, failure of exogenous benzoyl-CoA to inhibit incorporation of [14C]hippurate and inhibition of hippurate synthesis supported by ATP, but not glutamate, by carboxyatractyloside. 3. The relative activities of the individual enzymes and the mitochondrial content of benzoyl-CoA in the presence and absence of glycine suggest that hippurate synthesis is rate-limited by formation of benzoyl-CoA. 4. The increases in rates of ATP hydrolysis and of O2 consumption on the addition of benzoate and glycine were in good agreement with those required to support hippurate synthesis. The increase in respiration indicates that State-4 respiration [Chance & Williams (1957) Adv. Enzymol 17, 65-134] is not used, with these conditions, for ATP synthesis.


1983 ◽  
Vol 212 (3) ◽  
pp. 829-834 ◽  
Author(s):  
A Wielburski ◽  
B D Nelson

The assembly of cytochrome oxidase was studied in isolated rat liver mitochondria and isolated rat hepatocytes labelled in vitro with L-[35S]methionine. This was achieved by studying the temporal association of radioactive subunits which are immunoabsorbed with antibodies against subunits I, II and the holoenzyme. Antibodies against the holoenzyme were shown to be highly specific for subunit V. The results show that subunit I appears in the holoenzyme late in the assembly process. No radioactive subunit I is absorbed with antiserum against subunit II or the holoenzyme (subunit V) after a 30 min pulse in either isolated mitochondria or hepatocytes. However, both antisera absorb radioactive subunits I after a 150 min chase in isolated hepatocytes. This was confirmed using antibodies against subunit I, which absorbed only radioactive subunit I after a 30 min pulse but absorbed radioactive subunits I-III and VI after a 150 min chase. Thus, the late assembly of radioactive subunit I is explained by a temporal sequence in the assembly process and not by the presence of a large, non-radioactive pool of subunit I. Using the above approach and the three specific antisera, the following temporal sequence in the assembly of cytochrome oxidase was established. Subunits II and III assemble rapidly with each other or with cytoplasmically translated subunit VI. This complex of three peptides in turn assembles slowly with subunit I or with the other cytoplasmically translated subunits. The early association of subunit VI with the mitochondrially translated subunits II and III suggests a possible role of the former in integration of the holoenzyme.


1980 ◽  
Vol 186 (2) ◽  
pp. 637-639 ◽  
Author(s):  
K Krab ◽  
M Wikström

The respiratory-chain inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide catalyses transmembrane proton transport driven by a pH gradient in isolated rat liver mitochondria. This effect explains the apparent blockade of net proton translocation by this compound in mitochondria respiring with ferrocyanide as described by Papa, Lorusso, Guerrieri, Boffoli, Izzo & Capuano [(1977) in Bioenergetics of Membranes (Packer, Papageorgiu & Trebst, eds.), pp. 377-388, Elsevier/North-Holland, Amsterdam] and by Lorusso, Capuano, Boffoli, Stefanelli & Papa [(1979) Biochem. J. 182, 133-147].


Sign in / Sign up

Export Citation Format

Share Document