scholarly journals Differential stimulation of S-adenosylmethionine decarboxylase by difluoromethylornithine in the rat colon and small intestine

1989 ◽  
Vol 259 (2) ◽  
pp. 513-518 ◽  
Author(s):  
A G Halline ◽  
P K Dudeja ◽  
T A Brasitus

The effects of chronic inhibition of ornithine decarboxylase (ODC) by the specific inhibitor difluoromethylornithine (DFMO) in the rat colon and small intestine on mucosal contents of polyamines, decarboxylated S-adenosylmethionine (decarboxylated AdoMet) and S-adenosylmethionine decarboxylase (AdoMet decarboxylase) activity were studied. Administration of 1% DFMO in the drinking water for 10 or 15 weeks resulted in inhibition of ODC and decreases in intracellular putrescine and spermidine contents in both proximal and distal segments of small intestine and colon. At both time points DFMO administration resulted in a dramatic stimulation of AdoMet decarboxylase activity and a rise in decarboxylated AdoMet content in the proximal and distal small-intestinal segments compared with controls, which was not seen in either colonic segment of DFMO-treated animals. This differential stimulation of AdoMet decarboxylase by DFMO in the small intestine and colon could not be entirely explained on the basis of differences in polyamine contents, which are known to regulate this enzyme activity. Kinetic and inhibition studies of AdoMet decarboxylase in control small and large intestine revealed that: (1) there was no difference in Vmax. values between the tissues; (2) the Km for AdoMet was higher in the small intestine than in the colon; and (3) the Ki for product inhibition by decarboxylated AdoMet was higher in the small intestine than in the colon. These results suggest that the differential stimulation of AdoMet decarboxylase by DFMO in the small intestine and colon may be due to different isoenzymes and could play a significant role in the regulation of polyamine contents throughout the gut.

1976 ◽  
Vol 231 (5) ◽  
pp. 1557-1561 ◽  
Author(s):  
DV Maudsley ◽  
J Leif ◽  
Y Kobayashi

Ornithine decarboxylase in the small intestine of starved rats was stimulated 3- to 10-fold by refeeding or administration of insulin. A peak is observed 3-5 h following treatment after which the enzyme activity rapidly declines. The rise in ornithine decarboxylase is reduced by actinomycin D or cycloheximide. The increase in enzyme activity occurs mainly in the duodenum and jejunum with less than a twofold change being observed in the ileum. A small (twofold) increase in S-adenosylmethionine decarboxylase activity in the small intestine was observed after food, but there was no change in diamine oxidase activity. Whereas pentagastrin and metiamide administration markedly stimulated histidine decarbosylase in the gastric mucosa, no consistent effect of these agents on ornithine decarboxylase in the small intestine was observed. The similarities and differences between histidine decarboxylase and ornithine decarboxylase are discussed.


1981 ◽  
Vol 196 (3) ◽  
pp. 733-738 ◽  
Author(s):  
H Korpela ◽  
E Hölttä ◽  
T Hovi ◽  
J Jänne

The stimulation of lymphocyte ornithine decarboxylase and adenosylmethionine decarboxylase produced by phytohaemagglutinin was accompanied by an equally marked, but delayed, stimulation of spermidine synthase, which is not commonly considered as an inducible enzyme. In contrast with the marked stimulation of these biosynthetic enzymes, less marked changes were observed in the biodegradative enzymes of polyamines in response to phytohaemagglutinin. Diamine oxidase activity was undetectable during all stages of the transformation. The activity of polyamine oxidase remained either constant or was slightly decreased several days after addition of the mitogen. The activity of polyamine acetylase (employing all the natural polyamines as substrates) distinctly increased both in the cytosolic and crude nuclear preparations of the cells during later stages of mitogen activation. Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, although powerfully inhibiting ornithine decarboxylase, produced a gradual enhancement of adenosylmethionine decarboxylase activity during lymphocyte activation, without influencing the activities of the two propylamine transferases (spermidine synthase and spermine synthase).


1986 ◽  
Vol 251 (3) ◽  
pp. G362-G369
Author(s):  
K. R. Feingold ◽  
G. Zsigmond ◽  
S. R. Lear ◽  
A. H. Moser

The mechanism by which diabetes results in an increase in small intestinal cholesterol synthesis is unknown. Previous studies have demonstrated that limiting food intake prevents the increase in intestinal cholesterol synthesis, and it has therefore been proposed that the stimulation of cholesterol synthesis in the small intestine is secondary to the hyperphagia that is associated with poorly controlled diabetes. To shed further light on the role of hyperphagia we have studied the effect on cholesterol synthesis of a variety of conditions that increase food intake. In third-trimester pregnant animals, lactating animals, obese animals, and in animals infused intragastrically with 16 g glucose/day vs. 8 g glucose/day, we have observed that an increase in food intake is associated with an increase in small intestinal cholesterol synthesis. Furthermore, these findings support the hypothesis that hyperphagia is the chief stimulus for the increase in cholesterol synthesis in the small intestine of diabetic animals. Additional studies have demonstrated that simply increasing the bulk of food ingested by adding Alphacel to the diet does not alter cholesterol synthesis in the small intestine. Lastly, in animals in whom Thiry fistulas were surgically constructed we observed that cholesterol synthesis is increased in the diabetic animals in both the segment of the small intestine in contact with the food stream and the segment of the small intestine that is excluded from contact. This observation suggests that the direct contact of the intestinal mucosa with caloric sources is not the sole trigger for increasing small intestinal cholesterol synthesis in hyperphagic diabetic animals.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 318 (1) ◽  
pp. G99-G108 ◽  
Author(s):  
Marcello Costa ◽  
Timothy James Hibberd ◽  
Lauren J. Keightley ◽  
Lukasz Wiklendt ◽  
John W. Arkwright ◽  
...  

Cyclical propagating waves of muscle contraction have been recorded in isolated small intestine or colon, referred to here as motor complexes (MCs). Small intestinal and colonic MCs are neurogenic, occur at similar frequencies, and propagate orally or aborally. Whether they can be coordinated between the different gut regions is unclear. Motor behavior of whole length mouse intestines, from duodenum to terminal rectum, was recorded by intraluminal multisensor catheter. Small intestinal MCs were recorded in 27/30 preparations, and colonic MCs were recorded in all preparations ( n = 30) with similar frequencies (0.54 ± 0.03 and 0.58 ± 0.02 counts/min, respectively). MCs propagated across the ileo-colonic junction in 10/30 preparations, forming “full intestine” MCs. The cholinesterase inhibitor physostigmine increased the probability of a full intestine MC but had no significant effect on frequency, speed, or direction. Nitric oxide synthesis blockade by Nω-nitro-l-arginine, after physostigmine, increased MC frequency in small intestine only. Hyoscine-resistant MCs were recorded in the colon but not small intestine ( n = 5). All MCs were abolished by hexamethonium ( n = 18) or tetrodotoxin ( n = 2). The enteric neural mechanism required for motor complexes is present along the full length of both the small and large intestine. In some cases, colonic MCs can be initiated in the distal colon and propagate through the ileo-colonic junction, all the way to duodenum. In conclusion, the ileo-colonic junction provides functional neural continuity for propagating motor activity that originates in the small or large intestine. NEW & NOTEWORTHY Intraluminal manometric recordings revealed motor complexes can propagate antegradely or retrogradely across the ileo-colonic junction, spanning the entire small and large intestines. The fundamental enteric neural mechanism(s) underlying cyclic motor complexes exists throughout the length of the small and large intestine.


1984 ◽  
Vol 247 (5) ◽  
pp. G494-G501
Author(s):  
K. R. Feingold ◽  
A. H. Moser

Previous studies have demonstrated that cholesterol synthesis is increased twofold in the small intestine of diabetic animals. The present study demonstrates that the stimulation of small intestinal cholesterol synthesis by diabetes is a generalized phenomenon occurring in all segments of the small intestine. Quantitatively, in control animals the proximal two segments of the small intestine account for the majority of the total small intestinal cholesterol synthesis, whereas in the diabetic animals, because of the generalized stimulation in cholesterogenesis, the contribution of the terminal segments to total small intestinal cholesterol synthesis is of increased importance. The various manipulations that regulate cholesterol synthesis in the small intestine of diabetic animals also affect cholesterol synthesis in all portions of the small intestine. In diabetic animals cholesterol feeding and the limitation of food intake decrease cholesterol synthesis in the total small intestine and in all segments of the small intestine. Conversely, colestipol feeding increases cholesterol synthesis in all segments of the small intestine. These results demonstrate that, despite the obvious structural, functional, and environmental differences among the various segments of the small intestine, the stimulation of cholesterol synthesis that occurs secondary to diabetes mellitus is a generalized phenomenon. Similarly, the factors that regulate small intestinal cholesterol synthesis do so in a generalized manner.


1984 ◽  
Vol 219 (3) ◽  
pp. 811-817 ◽  
Author(s):  
K Käpyaho ◽  
A Kallio ◽  
J Jänne

2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands.


1980 ◽  
Vol 190 (3) ◽  
pp. 747-754 ◽  
Author(s):  
Leena Alhonen-Hongisto

1. The mechanism of stimulation of S-adenosylmethionine decarboxylase (EC 4.1.1.50) activity by inhibitors of ornithine decarboxylase (EC 4.1.1.17), namely dl-α-difluoromethylornithine, 1,3-diaminopropane and 1,3-diaminopropan-2-ol, was studied in Ehrlich ascites-tumour cells grown in suspension cultures. 2. Difluoromethylornithine and diaminopropane, although decreasing the content of putrescine and spermidine, markedly stimulated adenosylmethionine decarboxylase activity after exposure of the cells to the drugs for 8h, whereas the effect of diaminopropanol only became apparent many hours later. In tumour cells exposed to any of the inhibitors, a close negative correlation existed between the activity of adenosylmethionine decarboxylase and the intracellular concentration of spermidine and/or spermidine plus spermine, suggesting that a depletion of higher polyamines triggered enhancement of adenosylmethionine decarboxylase activity. 3. The mechanism of difluoromethylornithine- and diaminopropane-induced stimulation of adenosylmethionine decarboxylase involved (a) a marked increase in the apparent half-life of the enzyme and (b) an induction of enhanced enzyme synthesis. Diaminopropanol seemed to act solely via an induction mechanism. 4. The increased adenosylmethionine decarboxylase activity elicited by difluoromethylornithine could be restored to control values by micromolar concentrations of exogenous spermidine and spermine in 4h and by putrescine in 22h. In addition to the natural polyamines, elevated adenosylmethionine decarboxylase activity could be repressed by 3,3′-iminodipropylamine, a close analogue of spermidine, but not by non-physiological diamines. 5. Addition of spermidine and actinomycin D to cultures treated with difluoromethylornithine produced a comparable decay of enhanced adenosylmethionine decarboxylase activity (with an apparent half-life of about 2.5h), whereas the effect of cycloheximide was much more rapid. The present results suggest that polyamines may regulate adenosylmethionine decarboxylase at the transcriptional level of gene expression.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S140-S141
Author(s):  
S Sugimoto ◽  
E Kobayashi ◽  
M Fujii ◽  
Y Ohta ◽  
K Ishikawa ◽  
...  

Abstract Background Massive small intestinal resection leads to short bowel syndrome (SBS), which is a severe malabsorption disorder. Crohn’s disease is one of the most frequent cause of surgical removal of the small intestine in adults. Severe SBS patients need to receive permanent parenteral nutrition, which can cause serious complications. Intestinal transplantation currently remains the only curative option for such patients but has not widespread due to its high mortality/rejection rates. Here, we propose a concept to generate a rejection-free small intestinalized colon (SIC) by replacing the native colonic epithelium with small intestinal organoids. Methods Human normal intestinal organoids and rat intestinal organoids derived from luciferase-expressing LEW transgenic rats were established and cultured as previously described (Fujii et al. Cell Stem Cell 2018). Human colon or ileum organoids were xenotransplanted onto the EDTA-injured colon of immunodeficient mice via transanal infusion as previously described (Sugimoto et al. Cell Stem Cell 2018). In LEW rats, a 4-cm segment of the ascending and proximal transverse colon was dissected with the preservation of the vasculature. After EDTA-based removal of the colon epithelium, rat colon or ileum organoids were transplanted in a blinded manner. Following organoid transplantation, the colon segment was fixed to the abdominal walls as stoma outlets for a week. Afterwards, organoid-transplanted colon segment was trimmed and interposed between the jejunum beginning and the ileocolic valve following total jejunoileum resection. Overall survival and detailed histological analyses were performed. Results Xenotransplanted human ileum organoids reconstituted nascent villus structures reminiscent of the ileum epithelium in mouse colon. Furthermore, ileum xenografts exhibited a formation of Lyve-1+ lacteal-like structure equipped with the absorption-related machinery, but not colon xenografts. In rats, engrafted ileum organoids initially formed crypt-like structures in the colostomy and, after interposition, they developed mature villus structures. The villus formation was small intestine-specific and flow-dependent. The SIC gained small intestinal function along with the remodelling of the underlying lymphovascular networks. Ileum organoid-transplanted rats exhibited milder body weight loss and significantly higher survival rate compared to colon organoid-transplanted rats. Conclusion The SIC with villus structure, intact vasculature and innervation, and the lacteal, had absorptive and peristalsis functions. Small intestinal organoid transplantation as cell source of the SIC ameliorated intestinal failure in a rat SBS model.


1980 ◽  
Vol 192 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Kirsti Käpyaho ◽  
Hannu Pösö ◽  
Juhani Jänne

The effect of various hormones on the activities of the four enzymes engaged with the biosynthesis of the polyamines has been investigated in the rat. Human choriogonadotropin induced a dramatic, yet transient, stimulation of l-ornithine decarboxylase (EC 4.1.1.17) activity in rat ovary, with no or only marginal changes in the activities of S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (aminopropyltransferase; EC 2.5.1.16) or spermine synthase. A single injection of oestradiol into immature rats maximally induced uterine ornithine decarboxylase at 4h after the injection. This early stimulation of ornithine decarboxylase activity was accompanied by a distinct enhancement of adenosylmethionine decarboxylase activity and a decrease in the activities of spermidine synthase and spermine synthase. In the seminal vesicle of castrated rats, testosterone treatment elicited a striking and persistent stimulation of ornithine decarboxylase and adenosylmethionine decarboxylase activities. The activity of spermidine synthase likewise rapidly increased between the first and the second day after the commencement of the hormone treatment, whereas the activity of spermine synthase remained virtually unchanged during the whole period of observation. Testosterone-induced changes in polyamine formation in the ventral prostate were comparable with those found in the seminal vesicle, with the possible exception of a more pronounced stimulation of spermidine synthase activity. It thus appears that an enhancement in one or both of the propylamine transferase (aminopropyltransferase) activities in response to hormone administration is an indicator of hormone-dependent growth (uterus and the male accessory sexual glands), and is not necessarily associated with non-proliferative hormonal responses, such as gonadotropin-induced luteinization of the ovarian tissue.


1973 ◽  
Vol 136 (4) ◽  
pp. 1121-1124 ◽  
Author(s):  
Olle Heby ◽  
Sharon Sauter ◽  
Diane H. Russell

Administration of methylglyoxal bis(guanylhydrazone) to leukaemic mice results in an early depression followed by a marked elevation of S-adenosyl-l-methionine decarboxylase activity. Further, there is an early prolonged increase in the activity of ornithine decarboxylase, the initial enzyme in the polyamine biosynthetic pathway. Because of the profound effects of methylglyoxal bis(guanylhydrazone) in vivo on the polyamine biosynthetic pathway, the drug can no longer be considered a specific inhibitor of spermidine synthesis.


Sign in / Sign up

Export Citation Format

Share Document