scholarly journals Dephosphorylation of insulin-receptor autophosphorylation sites by particulate and soluble phosphotyrosyl-protein phosphatases

1990 ◽  
Vol 266 (1) ◽  
pp. 251-259 ◽  
Author(s):  
M J King ◽  
G J Sale

Insulin stimulates autophosphorylation of the insulin receptor on multiple tyrosines in three domains: tyrosines 1316 and 1322 in the C-terminal tail, 1146, 1150 and 1151 in the tyrosine-1150 domain, and possibly 953, 960 or 972 in the juxtamembrane domain. In the present work the sequence of dephosphorylation of the various autophosphorylation sites by particulate and cytosolic preparations of phosphotyrosyl-protein phosphatase from rat liver was studied with autophosphorylated human placental insulin receptor as substrate. Both phosphatase preparations elicited a broadly similar pattern of dephosphorylation. The tyrosine-1150 domain in triphosphorylated form was found to be exquisitely sensitive to dephosphorylation, and was dephosphorylated 3-10-fold faster than the di- and monophosphorylated forms of the tyrosine-1150 domain or phosphorylation sites in other domains. The major route for dephosphorylation of the triphosphorylated tyrosine-1150 domain involved dephosphorylation of one of the phosphotyrosyl pair, 1150/1151, followed by phosphotyrosyl 1146 to generate a species monophosphorylated mainly (greater than 80%) at tyrosine 1150 or 1151. Insulin receptors monophosphorylated in the tyrosine-1150 domain disappeared slowly, and overall the other domains were completely dephosphorylated faster than the tyrosine-1150 domain. Dephosphorylation of the diphosphorylated C-terminal domain yielded insulin receptor in which the domain was singly phosphorylated at tyrosine 1322. Triphosphorylation of the insulin receptor in the tyrosine-1150 domain appears important in activating the receptor tyrosine kinase to phosphorylate other proteins. The extreme sensitivity of the triphosphorylated form of the tyrosine-1150 domain to dephosphorylation may thus be important in terminating or regulating insulin-receptor tyrosine kinase action and insulin signalling.

1991 ◽  
Vol 275 (2) ◽  
pp. 413-418 ◽  
Author(s):  
M J King ◽  
R P Sharma ◽  
G J Sale

Insulin receptor tyrosine kinase activation, induced by insulin-stimulated autophosphorylation, was measured using a synthetic peptide containing residues 1142-1153 of the insulin receptor and shown to be reversed by both particulate and soluble phosphotyrosyl protein phosphatases from rat liver. Deactivation of the tyrosine kinase was highly sensitive to phosphatase action and was correlated best with disappearance of insulin receptors triphosphorylated in the tyrosine-1150 domain. Dephosphorylation of the di- and mono-phosphorylated forms of the tyrosine-1150 domain generated during dephosphorylation or of phosphorylation sites in the C-terminal or putative juxta-membrane domains occurred 3- greater than 10-fold more slowly than deactivation of the tyrosine kinase, and these phosphorylated species did not appear to appreciably (less than 20%) contribute to tyrosine kinase activation. These results indicate that the transition from the triply to the doubly phosphorylated form of the tyrosine-1150 domain acts as an important switch for deactivation of the insulin receptor tyrosine kinase during dephosphorylation. The exquisite sensitivity of this dephosphorylation/deactivation event to phosphotyrosyl protein phosphatase action, combined with the high affinities of this phosphatases for substrates and the high activities of the phosphatases in cells, suggests that the tyrosine kinase activity expressed by insulin-stimulated insulin receptors is likely to be stringently regulated.


Sign in / Sign up

Export Citation Format

Share Document