substrate phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 27)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Abrar Adnan Aljiboury ◽  
Amra Mujcic ◽  
Erin Curtis ◽  
Thomas Cammerino ◽  
Denise Magny ◽  
...  

Polo-Like-Kinase (PLK) 1 activity is associated with maintaining the functional and physical properties of the centrosome's pericentriolar matrix (PCM). In this study, we use a multimodal approach of human cells (HeLa) and zebrafish embryos in parallel to phylogenic analysis to test the role of a PLK1 binding protein, cenexin, in regulating the PCM. Our studies identify that cenexin is required for tempering microtubule nucleation and that a conserved C-terminal PLK1 binding site between humans, zebrafish, and out to cnidaria is required for PCM maintenance through PLK1-dependent substrate phosphorylation events. PCM architecture in cenexin-depleted zebrafish embryos was rescued with wild-type human cenexin, but not with a C-terminal cenexin mutant (S796A) deficient in PLK1 binding. We propose a model where cenexin's C-terminus acts in a conserved manner in eukaryotes, excluding nematodes and arthropods, to anchor PLK1 moderating its potential to phosphorylate PCM substrates required for PCM maintenance and function.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010123
Author(s):  
Zhenshan Liu ◽  
Chengrong Liu ◽  
Xin Wang ◽  
Wenwei Li ◽  
Jingfan Zhou ◽  
...  

RSK1, a downstream kinase of the MAPK pathway, has been shown to regulate multiple cellular processes and is essential for lytic replication of a variety of viruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV). Besides phosphorylation, it is not known whether other post-translational modifications play an important role in regulating RSK1 function. We demonstrate that RSK1 undergoes robust SUMOylation during KSHV lytic replication at lysine residues K110, K335, and K421. SUMO modification does not alter RSK1 activation and kinase activity upon KSHV ORF45 co-expression, but affects RSK1 downstream substrate phosphorylation. Compared to wild-type RSK1, the overall phosphorylation level of RxRxxS*/T* motif is significantly declined in RSK1K110/335/421R expressing cells. Specifically, SUMOylation deficient RSK1 cannot efficiently phosphorylate eIF4B. Sequence analysis showed that eIF4B has one SUMO-interacting motif (SIM) between the amino acid position 166 and 170 (166IRVDV170), which mediates the association between eIF4B and RSK1 through SUMO-SIM interaction. These results indicate that SUMOylation regulates the phosphorylation of RSK1 downstream substrates, which is required for efficient KSHV lytic replication.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stuart Sullivan ◽  
Thomas Waksman ◽  
Dimitra Paliogianni ◽  
Louise Henderson ◽  
Melanie Lütkemeyer ◽  
...  

AbstractPolarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.


2021 ◽  
Vol 22 (19) ◽  
pp. 10656
Author(s):  
Samantha F. Moore ◽  
Ejaife O. Agbani ◽  
Andreas Wersäll ◽  
Alastair W. Poole ◽  
Chris M. Williams ◽  
...  

One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3β. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3β(Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/β phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/β reduced thrombin-mediated platelet aggregation, integrin αIIbβ3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3β phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3β resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/β KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3β KI. In conclusion, our data indicate that GSK3α and GSK3β have differential roles in regulating platelet function.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0007
Author(s):  
Deniz Pirincci Ercan ◽  
Florine Chrétien ◽  
Probir Chakravarty ◽  
Helen R. Flynn ◽  
Ambrosius P. Snijders ◽  
...  

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae. All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.


Author(s):  
Søren Jessen ◽  
Kasper Eibye ◽  
Peter Møller Christensen ◽  
Morten Hostrup ◽  
Jens Bangsbo

We investigated the effect of caffeine and acetaminophen on power output during a 6-min performance-test, peripheral fatigue, and muscle protein kinase A (PKA) substrate-phosphorylation. Fourteen men (age(mean±SD): 26±6 years; V̇O2max: 63.9±5.0 mL∙min-1∙kg-1) completed four randomized trials with acetaminophen (1500 mg), caffeine (5 mg∙kgbw-1), combined caffeine and acetaminophen (caffeine+acetaminophen) or placebo. Mean power output during the 6-min performance-test (placebo mean:312±41 W) was higher with caffeine (+5 W;95%CI: 1 to 9;P=0.017) and caffeine+acetaminophen (+6 W;95%CI: 0 to 12;P=0.049) than placebo, but not with acetaminophen (+1 W;95%CI: -4 to 7;P=0.529). Decline in quadriceps maximal isometric voluntary torque immediately after the performance-test was lower (treatment×time; P=0.035) with acetaminophen (-40 Nm;95%CI:-53 to -30;P<0.001) and caffeine+acetaminophen (-44 Nm;95%CI: -58 to -30;P<0.001) than placebo (-53 Nm;95%CI: -71 to -39;P<0.001) but was similar with caffeine (-54 Nm;95%CI: -69 to -38;P<0.001). Muscle phosphocreatine content decreased more during the performance-test (treatment×time;P=0.036) with caffeine+acetaminophen (-55 mmol∙kgdw-1;95%CI: -65 to -46;P<0.001) than placebo (-40 mmol∙kgdw-1;95%CI: -52 to -24;P<0.001). Muscle net lactate accumulation was not different from placebo (+85 mmol∙kgdw-1;95%CI: 60 to 110;P<0.001) for any treatment (treatment×time;P=0.066), being +75 mmol∙kgdw-1 (95%CI: 51 to 99;P<0.001) with caffeine, +76 mmol∙kgdw-1 (95%CI: 58 to 96;P<0.001) with acetaminophen, and +103 mmol∙kgdw-1 (95%CI: 89 to 115;P<0.001) with caffeine+acetaminophen. Decline in muscle ATP and glycogen content and increase in PKA substrate-phosphorylation was not different between treatments (treatment×time;P>0.1). Thus, acetaminophen provides no additive performance enhancing effect to caffeine during 6-min maximal cycling. In addition, change in PKA activity is likely not a major mechanism of performance improvement with caffeine.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 518
Author(s):  
Jakob Fleischmann ◽  
Andreas Feichtner ◽  
Louis DeFalco ◽  
Valentina Kugler ◽  
Selina Schwaighofer ◽  
...  

Mutations at different stages of the mitogen-activated protein kinase (MAPK) signaling pathway lead to aberrant activation of the involved protein kinase entities. These oncogenic modifications alter signal propagation which converge on the gatekeeper kinases MEK1/2, transmitting the input signal to ERK1/2. Thus, targeted MEK inhibition causes qualitative alterations of carcinogenic MAPK signals. Phosphorylation of the MEK1 activation loop at the positions S218 and S222 by RAF kinases triggers the conformational alignment of MEK’s catalytic pocket to enable ATP-binding and substrate phosphorylation. We have extended a kinase conformation (KinCon) biosensor platform to record MEK1 activity dynamics. In addition to MEK phosphorylation by BRAF, the integration of the phosphorylation-mimetic mutations S218D/S222D triggered opening of the kinase. Structural rearrangement may involve the flexibility of the N terminal MEK1 A-helix. Application of the allosterically acting MEK inhibitors (MEKi) trametinib, cobimentinib, refametinib, and selumetinib converted activated MEK1 KinCon reporters back into a more closed inactive conformation. We confirmed MEK1 KinCon activity dynamics upon drug engagement using the patient-derived melanoma cell line A2058, which harbors the V600E hotspot BRAF mutation. In order to confirm biosensor dynamics, we simulated structure dynamics of MEK1 kinase in the presence and absence of mutations and/or MEKi binding. We observed increased dynamics for the S218D/S222D double mutant particularly in the region of the distal A-helix and alpha-C helix. These data underline that MEK1 KinCon biosensors have the potential to be subjected to MEKi efficacy validations in an intact cell setting.


Author(s):  
Deniz Pirincci Ercan ◽  
Frank Uhlmann

AbstractThe cell cycle is an ordered series of events by which cells grow and divide to give rise to two daughter cells. In eukaryotes, cyclin–cyclin-dependent kinase (cyclin–Cdk) complexes act as master regulators of the cell division cycle by phosphorylating numerous substrates. Their activity and expression profiles are regulated in time. The budding yeast S. cerevisiae was one of the pioneering model organisms to study the cell cycle. Its genetic amenability continues to make it a favorite model to decipher the principles of how changes in cyclin-Cdk activity translate into the intricate sequence of substrate phosphorylation events that govern the cell cycle. In this chapter, we introduce robust and straightforward methods to analyze cell cycle progression in S. cerevisiae. These techniques can be utilized to describe cell cycle events and to address the effects of perturbations on accurate and timely cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document