scholarly journals Point mutations of two arginine residues in the Streptomyces R61 dd-peptidase

1992 ◽  
Vol 283 (1) ◽  
pp. 123-128 ◽  
Author(s):  
C Bourguignon-Bellefroid ◽  
B Joris ◽  
J Van Beeumen ◽  
J M Ghuysen ◽  
J M Frère

Incubation of the exocellular DD-carboxypeptidase/transpeptidase of Streptomyces R61 with phenylglyoxal resulted in a time-dependent decrease in the enzyme activity. This inactivation was demonstrated to be due to modification of the Arg-99 side chain. In consequence, the role of that residue was investigated by site-directed mutagenesis. Mutation of Arg-99 into leucine appeared to be highly detrimental to enzyme stability, reflecting a determining structural role for this residue. The conserved Arg-103 residue was also substituted by using site-directed mutagenesis. The modification to a serine residue yielded a stable enzyme, the catalytic properties of which were similar to those of the wild-type enzyme. Thus Arg-103, although strictly conserved or replaced by a lysine residue in most of the active-site penicillin-recognizing proteins, did not appear to fulfil any essential role in either the enzyme activity or structure.

2012 ◽  
Vol 443 (3) ◽  
pp. 769-778 ◽  
Author(s):  
Márcia A. Liz ◽  
Sérgio C. Leite ◽  
Luiz Juliano ◽  
Maria J. Saraiva ◽  
Ana M. Damas ◽  
...  

TTR (transthyretin) was found recently to possess proteolytic competency besides its well-known transport capabilities. It was described as a cryptic serine peptidase cleaving multiple natural substrates (including β-amyloid and apolipoprotein A-I) involved in diseases such as Alzheimer's disease and atherosclerosis. In the present study, we aimed to elucidate the catalytic machinery of TTR. All attempts to identify a catalytic serine residue were unsuccessful. However, metal chelators abolished TTR activity. Proteolytic inhibition by EDTA or 1,10-phenanthroline could be reversed with Zn2+ and Mn2+. These observations, supported by analysis of three-dimensional structures of TTR complexed with Zn2+, led to the hypothesis that TTR is a metallopeptidase. Site-directed mutagenesis of selected amino acids unambiguously confirmed this hypothesis. The TTR active site is inducible and constituted via a protein rearrangement resulting in ~7% of proteolytically active TTR at pH 7.4. The side chain of His88 is shifted near His90 and Glu92 establishing a Zn2+-chelating pattern HXHXE not found previously in any metallopeptidase and only conserved in TTR of humans and some other primates. Point mutations of these three residues yielded proteins devoid of proteolytic activity. Glu72 was identified as the general base involved in activation of the catalytic water. Our results unveil TTR as a metallopeptidase and define its catalytic machinery.


2005 ◽  
Vol 71 (4) ◽  
pp. 1909-1914 ◽  
Author(s):  
Chan K. Chan Kwo Chion ◽  
Sarah E. Askew ◽  
David J. Leak

ABSTRACT Propene monooxygenase has been cloned from Mycobacterium sp. strain M156, based on hybridization with the amoABCD genes of Rhodococcus corallinus B276. Sequencing indicated that the mycobacterial enzyme is a member of the binuclear nonheme iron monooxygenase family and, in gene order and sequence, is most similar to that from R. corallinus B-276. Attempts were made to express the pmoABCD operon in Escherichia coli and Mycobacterium smegmatis mc2155. In the former, there appeared to be a problem resolving overlapping reading frames between pmoA and -B and between pmoC and -D, while in the latter, problems were encountered with plasmid instability when the pmoABCD genes were placed under the control of the hsp60 heat shock promoter in the pNBV1 vector. Fortuitously, constructs with the opposite orientation were constitutively expressed at a level sufficient to allow preliminary mutational analysis. Two PMO active-site residues (A94 and V188) were targeted by site-directed mutagenesis to alter their stereoselectivity. The results suggest that changing the volume occupied by the side chain at V188 leads to a systematic alteration in the stereoselectivity of styrene oxidation, presumably by producing different orientations for substrate binding during catalysis. Changing the volume occupied by the side chain at A94 produced a nonsystematic change in stereoselectivity, which may be attributable to the role of this residue in expansion of the binding site during substrate binding. Neither set of mutations changed the enzyme's specificity for epoxidation.


1993 ◽  
Vol 123 (4) ◽  
pp. 1017-1025 ◽  
Author(s):  
L M Shaw ◽  
A M Mercurio

The alpha 6 beta 1 integrin is expressed on the macrophage surface in an inactive state and requires cellular activation with PMA or cytokines to function as a laminin receptor (Shaw, L. M., J. M. Messier, and A. M. Mercurio. 1990. J. Cell Biol. 110:2167-2174). In the present study, the role of the alpha 6 subunit cytoplasmic domain in alpha 6 beta 1 integrin activation was examined. The use of P388D1 cells, an alpha 6-integrin deficient macrophage cell line, facilitated this analysis because expression of either the alpha 6A or alpha 6B subunit cDNAs restores their activation responsive laminin adhesion (Shaw, L. S., M. Lotz, and A. M. Mercurio. 1993. J. Biol. Chem. 268:11401-11408). A truncated alpha 6 cDNA, alpha 6-delta CYT, was constructed in which the human cytoplasmic domain sequence was deleted after the GFFKR pentapeptide. Expression of this cDNA in P388D1 cells resulted in the surface expression of a chimeric alpha 6-delta CYT beta 1 integrin that was unable to mediate laminin adhesion or increase this adhesion in response to PMA under normal conditions, i.e., in medium that contained physiological concentrations of Ca++ and Mg++. The alpha 6A-delta CYT transfectants adhered to laminin, however, when Ca++/Mg++ was replaced with 150 microM Mn++. We also assessed the role of serine phosphorylation in the regulation of alpha 6A beta 1 integrin function by site-directed mutagenesis of the two serine residues present in the alpha 6A cytoplasmic domain because this domain is phosphorylated on serine residues in response to stimuli that activate the laminin receptor function of alpha 6 A beta 1. Point mutations were introduced in the alpha 6A cDNA that changed either serine residue #1064 (M1) or serine residue #1071 (M2) to alanine residues. In addition, a double mutant (M3) was constructed in which both serine residues were changed to alanine residues. P388D1 transfectants which expressed these serine mutations adhered to laminin in response to PMA to the same extent as cells transfected with wild-type alpha 6A cDNA. These findings provide evidence for a novel mode of integrin regulation that is distinct from that reported for other regulated integrins (O'Toole, T. E., D. Mandelman, J. Forsyth, S. J. Shattil, E. F. Plow, and M. H. Ginsberg. 1991. Science (Wash. DC). 254:845-847. Hibbs, M. L., H. Xu, S. A. Stacker, and T. A. Springer. 1991. Science (Wash. DC). 251:1611-1613), and they demonstrate that serine phosphorylation of the alpha 6A cytoplasmic domain is not involved in this regulation.


1991 ◽  
Vol 275 (2) ◽  
pp. 447-452 ◽  
Author(s):  
M Lander ◽  
A R Pitt ◽  
P R Alefounder ◽  
D Bardy ◽  
C Abell ◽  
...  

The role of conserved arginine residues in hydroxymethylbilane synthase was investigated by replacing these residues in the enzyme from Escherichia coli with leucine residues by using site-directed mutagenesis. The kinetic parameters for these mutant enzymes and studies on the formation of intermediate enzyme-substrate complexes indicate that several of these arginine residues are involved in binding the carboxylate side chains of the pyrromethane cofactor and the growing oligopyrrole chain.


2011 ◽  
Vol 77 (20) ◽  
pp. 7316-7320 ◽  
Author(s):  
Jin-Geun Choi ◽  
Yo-Han Ju ◽  
Soo-Jin Yeom ◽  
Deok-Kun Oh

ABSTRACTThe S213C, I33L, and I33L S213C variants ofd-psicose 3-epimerase fromAgrobacterium tumefaciens, which were obtained by random and site-directed mutagenesis, displayed increases of 2.5, 5, and 7.5°C in the temperature for maximal enzyme activity, increases of 3.3-, 7.2-, and 29.9-fold in the half-life at 50°C, and increases of 3.1, 4.3, and 7.6°C in apparent melting temperature, respectively, compared with the wild-type enzyme. Molecular modeling suggests that the improvement in thermostability in these variants may have resulted from increased putative hydrogen bonds and formation of new aromatic stacking interactions. The immobilized wild-type enzyme with and without borate maintained activity for 8 days at a conversion yield of 70% (350 g/liter psicose) and for 16 days at a conversion yield of 30% (150 g/liter psicose), respectively. After 8 or 16 days, the enzyme activity gradually decreased, and the conversion yields with and without borate were reduced to 22 and 9.6%, respectively, at 30 days. In contrast, the activities of the immobilized I33L S213C variant with and without borate did not decrease during the operation time of 30 days. These results suggest that the I33L S213C variant may be useful as an industrial producer ofd-psicose.


1998 ◽  
Vol 333 (2) ◽  
pp. 367-372 ◽  
Author(s):  
Yunjo SOH ◽  
Byoung J. SONG ◽  
Jiingjau JENG ◽  
Abraham T. KALLARAKAL

It has been shown that one arginine per monomer at an unknown position is essential for enzyme activity of the homodimeric transketolase (TK) [Kremer, Egan and Sable (1980) J. Biol. Chem. 255, 2405–2410]. To identify the critical arginine, four highly conserved arginine residues of rat TK (Arg102, Arg350, Arg433 and Arg506) were replaced with alanine by site-directed mutagenesis. Wild-type and mutant TK proteins were produced in Escherichia coli and characterized. The Arg102 → Ala mutant exhibited similar catalytic activity to the wild-type enzyme, whereas Arg350 → Ala, Arg506 → Ala and Arg433 → Ala mutants exhibited 36.7, 37.0 and 6.1% of the wild-type activity respectively. Three recombinant proteins (wild-type, Arg350 → Ala and Arg433 → Ala) were purified to apparent homogeneity using Ni2+-affinity chromatography and further characterized. All these proteins were able to form homodimers (148 kDa), as shown by immunoblot analysis subsequent to non-denaturing gel electrophoresis. The Arg433 → Ala mutant protein was less stable than the wild-type and Arg350 → Ala proteins at 55 °C. Kinetic analyses revealed that both Vmax and Km values were markedly affected in the Arg433 → Ala mutant. The Km values for two substrates xylulose 5-phosphate and ribose 5-phosphate were 11.5- and 24.3-fold higher respectively. The kcat/Km values of the Arg433 → Ala mutant for the two substrates were less than 1% of those of the wild-type protein. Molecular modelling of the rat TK revealed that Arg433 of one monomer has three potential hydrogen-bond interactions with the catalytically important highly conserved loop of the other monomer. Thus, our biochemical analyses and modelling data suggest the critical role of the previously uncharacterized Arg433 in TK activity.


1996 ◽  
Vol 319 (1) ◽  
pp. 315-321 ◽  
Author(s):  
Kian-Leong TAN ◽  
Gareth CHELVANAYAGAM ◽  
Michael W. PARKER ◽  
Philip G. BOARD

The role of serine-11 in the catalytic mechanism of recombinant human GSTT2-2 was examined by site-directed mutagenesis. Amino acid sequence comparison of the Theta-class isoenzymes has identified a conserved serine residue in the N-terminal domain [Wilce, Board, Feil and Parker (1995) EMBO J. 14, 2133–2143]. This conserved serine has been implicated in the activation of the enzyme-bound glutathione [Board, Coggan and Parker (1995) Biochem. J. 311, 247–250]. Mutating the equivalent serine (residue 11) of GSTT2-2 to Ala, Thr or Tyr abolished the catalytic properties of GSTT2-2 with cumene hydroperoxide and ethacrynic acid as second substrate. However, with 1-menaphthyl sulphate (MSu) as the second substrate, the specific activity of the S11A mutant was doubled, while the S11T mutant retained half the wild-type activity and the S11Y mutant was inactive. The role of Ser-11 in catalysis seems to vary with different second substrates. In the substitution reaction with MSu, GSTT2-2 activity appears to depend on the size of the Ser-11 replacement rather than the presence of a side-chain hydroxy group. In addition, the reaction rate appears to be a function of pH, and there is no non-enzymic reaction even at high pH. We demonstrated that a reaction between MSu and an alternative thiol such as L-cysteine or 2-mercaptoethanol can take place in the presence of S-methylglutathione and GSTT2-2. We propose that the catalytic activity of GSTT2-2 with MSu is preceded by a conformational or charge modification to the enzyme upon the binding of glutathione or S-methylglutathione. This is followed by the binding of MSu and the subsequent removal of the sulphate group, giving rise to the carbonium ion of 1-methylnaphthelene as the electrophile that reacts with the nucleophilic species. The reaction mechanism of GSTT2-2 with MSu may represent a novel function of GSTT2-2 as a glutathione-dependent sulphatase.


1994 ◽  
Vol 302 (1) ◽  
pp. 291-295 ◽  
Author(s):  
A Moreau ◽  
M Roberge ◽  
C Manin ◽  
F Shareck ◽  
D Kluepfel ◽  
...  

On the basis of similarities between known xylanase sequences of the F family, three invariant acidic residues of xylanase A from Streptomyces lividans were investigated. Site-directed-mutagenesis experiments were carried out in Escherichia coli after engineering the xylanase A gene to allow its expression. Replacement of Glu-128 or Glu-236 by their isosteric form (Gln) completely abolished enzyme activity with xylan and p-nitrophenyl beta-D-cellobioside, indicating that the two substrates are hydrolysed at the same site. These two amino acids probably represent the catalytic residues. Immunological studies, which showed that the two mutants retained the same epitopes, indicate that the lack of activity is the result of the mutation rather than misfolding of the protein. Mutation D124E did not affect the kinetic parameters with xylan as substrate, but D124N reduced the Km 16-fold and the Vmax. 14-fold when compared with the wild-type enzyme. The mutations had a more pronounced effect with p-nitrophenyl beta-D-cellobioside as the substrate. Mutation D124E increased the Km and decreased the Vmax. 5-fold each, while D124N reduced the Km 4.5-fold and the Vmax. 75-fold. The mutations had no effect on the cleavage mode of xylopentaose.


Sign in / Sign up

Export Citation Format

Share Document