scholarly journals Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor

1992 ◽  
Vol 288 (2) ◽  
pp. 351-355 ◽  
Author(s):  
S Traverse ◽  
N Gomez ◽  
H Paterson ◽  
C Marshall ◽  
P Cohen

Stimulation of PC12 cells with nerve growth factor (NGF) increased mitogen-activated protein kinase kinase (MAPKK) activity > 20-fold after 5 min to a level that was largely sustained for at least 90 min. MAPKK activity was stimulated to a similar level by epidermal growth factor (EGF), but peaked at 2 min, declining thereafter and returning to basal levels after 60-90 min. Activation of MAPKK by either growth factor occurred prior to the activation of MAP kinase, consistent with MAPKK being the physiological activator of MAP kinase. The results demonstrate that the transient activation of MAPKK by EGF and its sustained activation by NGF underlies the transient and sustained activation of MAP kinase induced by EGF and NGF respectively. NGF or EGF induced the same two forms of MAPKK that were resolved on a Mono Q column. The Peak-1 MAPKK was activated initially and partially converted into the more acidic peak-2 MAPKK after prolonged growth-factor stimulation. The Peak-2 MAPKK was 20-fold more sensitive to inactivation by the catalytic subunit of protein phosphatase 2A. Stimulation with NGF caused a striking translocation of MAP kinase from the cytosol to the nucleus after 30 min, but not nuclear translocation of MAP kinase occurred after stimulation with EGF. The results suggest that sustained activation of the MAP kinase cascade may be required for MAP kinase to enter the nucleus, where it may initiate the gene transcription events required for neuronal differentiation of PC12 cells.

1994 ◽  
Vol 14 (10) ◽  
pp. 6944-6953
Author(s):  
R K Jaiswal ◽  
S A Moodie ◽  
A Wolfman ◽  
G E Landreth

Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.


1994 ◽  
Vol 14 (10) ◽  
pp. 6944-6953 ◽  
Author(s):  
R K Jaiswal ◽  
S A Moodie ◽  
A Wolfman ◽  
G E Landreth

Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.


2006 ◽  
Vol 34 (4) ◽  
pp. 524-533 ◽  
Author(s):  
Henriette E. Meyer zu Schwabedissen ◽  
Markus Grube ◽  
Annette Dreisbach ◽  
Gabriele Jedlitschky ◽  
Konrad Meissner ◽  
...  

2001 ◽  
Vol 276 (17) ◽  
pp. 13822-13829 ◽  
Author(s):  
Xi-Long Zheng ◽  
Shuji Matsubara ◽  
Catherine Diao ◽  
Morley D. Hollenberg ◽  
Norman C. W. Wong

Sign in / Sign up

Export Citation Format

Share Document