The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras

1994 ◽  
Vol 14 (10) ◽  
pp. 6944-6953
Author(s):  
R K Jaiswal ◽  
S A Moodie ◽  
A Wolfman ◽  
G E Landreth

Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.

1994 ◽  
Vol 14 (10) ◽  
pp. 6944-6953 ◽  
Author(s):  
R K Jaiswal ◽  
S A Moodie ◽  
A Wolfman ◽  
G E Landreth

Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway.


1992 ◽  
Vol 288 (2) ◽  
pp. 351-355 ◽  
Author(s):  
S Traverse ◽  
N Gomez ◽  
H Paterson ◽  
C Marshall ◽  
P Cohen

Stimulation of PC12 cells with nerve growth factor (NGF) increased mitogen-activated protein kinase kinase (MAPKK) activity > 20-fold after 5 min to a level that was largely sustained for at least 90 min. MAPKK activity was stimulated to a similar level by epidermal growth factor (EGF), but peaked at 2 min, declining thereafter and returning to basal levels after 60-90 min. Activation of MAPKK by either growth factor occurred prior to the activation of MAP kinase, consistent with MAPKK being the physiological activator of MAP kinase. The results demonstrate that the transient activation of MAPKK by EGF and its sustained activation by NGF underlies the transient and sustained activation of MAP kinase induced by EGF and NGF respectively. NGF or EGF induced the same two forms of MAPKK that were resolved on a Mono Q column. The Peak-1 MAPKK was activated initially and partially converted into the more acidic peak-2 MAPKK after prolonged growth-factor stimulation. The Peak-2 MAPKK was 20-fold more sensitive to inactivation by the catalytic subunit of protein phosphatase 2A. Stimulation with NGF caused a striking translocation of MAP kinase from the cytosol to the nucleus after 30 min, but not nuclear translocation of MAP kinase occurred after stimulation with EGF. The results suggest that sustained activation of the MAP kinase cascade may be required for MAP kinase to enter the nucleus, where it may initiate the gene transcription events required for neuronal differentiation of PC12 cells.


1998 ◽  
Vol 80 (3) ◽  
pp. 1352-1361 ◽  
Author(s):  
Saobo Lei ◽  
William F. Dryden ◽  
Peter A. Smith

Lei, Saobo, William F. Dryden, and Peter A. Smith. Involvement of Ras/MAP kinase in the regulation of Ca2+ channels in adult bullfrog sympathetic neurons by nerve growth factor. J. Neurophysiol. 80: 1352–1361, 1998. The cellular mechanisms that underlie nerve growth factor (NGF) induced increase in Ca2+-channel current in adult bullfrog sympathetic B-neurons were examined by whole cell recording techniques. Cells were maintained at low density in neuron-enriched, defined-medium, serum-free tissue culture for 6 days in the presence or absence of NGF (200 ng/ml). The increase in Ba2+ current ( I Ba) density induced by NGF was attenuated by the RNA synthesis inhibitor cordycepin (20 μM), by the DNA transcription inhibitor actinomycin D (0.01 μg/ml), by inhibitors of Ras isoprenylation (perillic acid 0.1–1.0 mM or α-hydroxyfarnesylphosphonic acid 10–100 μM), by tyrosine kinase inhibitors genistein (20 μM) or lavendustin A (1 μM), and by PD98059 (10–100 μM), an inhibitor of mitogen-activated protein kinase kinase. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) pathway (wortmannin, 100 nM, or LY29400, 100 μM) were ineffective as were inhibitors of phospholipase Cγ (U73122 or neomycin, both 100 μM). The effect of NGF persisted in Ca2+-free medium that contained 1.8 mM Mg2+ and 2 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. It was mimicked by a Trk antibody that was capable of inducing neurite outgrowth in explant cultures of bullfrog sympathetic ganglion. Antibodies raised against the low-affinity p75 neurotrophin receptor were ineffective in blocking the effect of NGF on I Ba. These results suggest that NGF-induced increase in Ca2+ channel current in adult sympathetic neurons results, at least in part, from new channel synthesis after Trk activation of Ras and mitogen activated protein kinase by a mechanism that is independent of extracellular Ca2+.


1996 ◽  
Vol 133 (6) ◽  
pp. 1383-1390 ◽  
Author(s):  
G Di Paolo ◽  
V Pellier ◽  
M Catsicas ◽  
B Antonsson ◽  
S Catsicas ◽  
...  

Stathmin is a ubiquitous cytosolic protein which undergoes extensive phosphorylation in response to a variety of external signals. It is highly abundant in developing neurons. The use of antisense oligonucleotides which selectively block stathmin expression has allowed us to study directly its role in rat PC12 cells. We show that stathmin depletion prevents nerve growth factor (NGF)-stimulated differentiation of PC12 cells into sympathetic-like neurons although the expression of several NGF-inducible genes was not affected. Furthermore, we found that stathmin phosphorylation in PC12 cells which is induced by NGF depends on mitogen-activated protein kinase (MAPK) activity. We conclude that stathmin is an essential component of the NGF-induced MAPK signaling pathway and performs a key role during differentiation of developing neurons.


1995 ◽  
Vol 307 (2) ◽  
pp. 513-519 ◽  
Author(s):  
L Pang ◽  
C F Zheng ◽  
K L Guan ◽  
A R Saltiel

Activation of mitogen-activated protein kinase (MAP kinase) plays an important role in the cellular effects of nerve growth factor (NGF). Although the precise pathway by which NGF activates MAP kinase is not clear, several enzymes have been identified that may form a linear phosphorylation cascade, in which MAP kinase is activated by MAP kinase kinase (MEK). A key enzyme that links the ras-GTP complex to MEK is widely believed to be the raf kinase. However, immunoprecipitation experiments in PC-12 cells revealed that raf is not the major NGF-dependent MEK kinase [Zheng, Ohmichi, Saltiel and Guan (1994) Biochemistry 33, 5595-5599]. We have identified a protein kinase from PC-12 cells that catalyses both the phosphorylation and activation of MEK. This activity is stimulated 3-fold in cells treated with NGF. The partial purification on FPLC and characterization of this MEK kinase indicate that it is distinct from raf, MEK, MAP kinase and other previously described NGF-stimulated protein kinases. The activity of this enzyme is unaffected by direct addition to the assay of heparin, staurosporine, K252A and the heat-stable cyclic AMP-dependent kinase peptide inhibitor, but is slightly inhibited by NaF and calcium ions. Comparison of its behaviour on gel permeation and sucrose-density gradients indicates a molecular mass in the region of 50,000 Da. Moreover, isoelectric focusing of the enzyme revealed a pI of approx. 7.3. The kinase activity is specific for ATP as substrate with a Km of 11 microM, and requires Mg2+ as a cofactor. Analysis of the activation of this enzyme in PC-12 cells transfected with a dominant inhibitory mutant of p21ras suggests that this MEK kinase resides downstream of ras in the MAP kinase activation pathway. Moreover, site-directed mutation of the residues on MEK that are phosphorylated by raf does not completely abrogate phosphorylation by the MEK kinase, suggesting that this enzyme may share some phosphorylation sites with raf, but also phosphorylates MEK on other sites.


1996 ◽  
Vol 316 (1) ◽  
pp. 167-173 ◽  
Author(s):  
Eliane BERROU ◽  
Michaëla FONTENAY-ROUPIE ◽  
Rozenn QUARCK ◽  
Fergus R. McKENZIE ◽  
Sylviane LÉVY-TOLEDANO ◽  
...  

Stimulation of smooth muscle cells with basic fibroblast growth factor (bFGF) results in the activation of the mitogen-activated protein kinase (MAP kinase) cascade and leads to cell proliferation. We show that transforming growth factor β1 (TGF-β1), at concentrations that completely inhibited bFGF-induced mitogenic activity, decreased bFGF-induced MAP kinase activity. Under these conditions, tyrosine and threonine phosphorylations of MAP kinase were differentially affected depending on the time period of TGF-β1 pretreatment. After a short (30 min) TGF-β1 pretreatment, the bFGF-mediated increase in phosphorylation of p42mapk on threonine was inhibited, with no effect on the level of phosphotyrosine or decrease in the electrophoretic mobility of p42mapk. This suggests that TGF-β1 inhibited MAP kinase activity through the action of a serine/threonine phosphatase. In contrast, a longer TGF-β1 pretreatment (4 h) partly inhibited the bFGF-induced MAP kinase mobility shift and correlated with the inhibition of phosphorylation on both threonine and tyrosine, suggesting that long-term TGF-β1 treatment prevented activation of the MAP kinase cascade or directly blocked MAP kinase. The ability of long-term (4 h) but not short-term (30 min) TGF-β1 pretreatment to inhibit MAP kinase activity was completely dependent on protein synthesis and suggests that TGF-β1 inhibits MAP kinase activity by two distinct mechanisms. These findings provide a molecular basis for the growth-inhibitory action of TGF-β1 on bFGF-induced mitogenic activity.


Sign in / Sign up

Export Citation Format

Share Document