scholarly journals v-Src activates a unique phospholipase D activity that can be distinguished from the phospholipase D activity activated by phorbol esters

1993 ◽  
Vol 294 (3) ◽  
pp. 711-717 ◽  
Author(s):  
J Song ◽  
D A Foster

Phospholipase D (PLD) activity, as measured by the transphosphatidylation of cellular phospholipids, is elevated in BALB/c 3T3 cells transformed by v-Src. Phorbol esters that activate protein kinase C (PKC) also increase PLC activity in BALB/c 3T3 cells. v-Src-induced PLD activity could be distinguished from phorbol ester-induced PLD activity by differential radiolabelling of phospholipids, which are the substrates of PLD. Both v-Src- and phorbol ester-induced PLD activity could be detected when phospholipids were prelabelled with either radiolabelled myristate or palmitate; however, only phorbol ester-induced PLD activity could be detected when either arachidonate or 1-O-alkyl-sn-glyceryl-3-phosphorylcholine (alkyl-lysoPC) was used to prelabel the phospholipids. The increased PLD activity in v-Src-transformed cells was not detected when the cells were prelabelled with either arachidonic acid or alkyl-lysoPC, which contains an ether linkage at sn-1 of the glycerol backbone. As both arachidonic acid and alkyl-lysoPC are incorporated into phosphatidylcholine (PC), the substrate for v-Src-induced PLD activity, these data suggest that the PLD activated by v-Src can distinguish PCs lacking arachidonic acid and ether linkages. Consistent with v-Src activating a PLD activity that is distinct from that activated by phorbol esters that activate PKC directly, neither depleting cells of PKC nor treatment with the protein kinase inhibitor, staurosporine, had any effect on v-Src-induced PLD activity, whereas both PKC depletion and staurosporine inhibited phorbol ester-induced PLD activity. Taken together, these data suggest that v-Src activates a PKC-independent PLD activity that is specific for a subpopulation of PC and distinct from the PLD activity induced by PKC activity induced by phorbol esters. The diacylglycerol produced from PC by the action of the v-Src-induced PLD may therefore be responsible for the activation of PKC by v-Src.

1992 ◽  
Vol 3 (9) ◽  
pp. 1049-1056 ◽  
Author(s):  
H Eldar ◽  
E Livneh

Cell lines stably overexpressing protein kinase C (PKC)-alpha were previously described by us. These cell lines were generated by the introduction of the full length cDNA coding for PKC-alpha into Swiss/3T3 cells. Here we show that activation of PKC-alpha by phorbol-esters induced in these cells specific phosphorylation of two cellular proteins p90 and p52. Phosphorylation of p80 (MARCKS protein), previously identified as a substrate for PKC, was also enhanced. Phosphorylated p90 and p52 proteins were associated with particulate membrane-enriched fractions and were extractable with the use of nonionic detergents. Time course analysis of phorbol-ester induced phosphorylation of p90 and p52 revealed maximal stimulation of phosphorylation after 15-30 min. Phosphamino acid analysis showed that phosphorylation of p90 and p52 occurred mainly on serine residues. Phosphorylation of p52 was also on threonine residues. Whereas, phorbol ester activation induced phosphorylation of both p90 and p52, the mitogens platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) enhanced phosphorylation of p90, but not p52. Thus, our studies showed the involvement of PKC-alpha in the regulation of p90 and p52 phosphorylation and provided direct evidence for the role of PKC-alpha in cellular signaling by PDGF and FGF. Moreover, the fact that phosphorylation of p52 was specific to phorbol ester activation may suggest its involvement in tumor promotion. Characterization of p90 and p52 will enable us to reveal the phosphorylation cascade activated downstream to PKC-alpha and to determine their role in mitogenic signaling and tumor promotion.


1988 ◽  
Vol 118 (1) ◽  
pp. 19-23 ◽  
Author(s):  
C. J. Allan ◽  
P. Skett

ABSTRACT Hepatocytes, isolated from adult male rats and maintained in serum- and hormone-free medium, were pretreated with phorbol esters known to activate protein kinase C (4β-phorbol-12-myristate-13-acetate) and to be inactive in this respect (4α-phorbol and its 12,13-didecanoate ester). Subsequently the cells were assayed for steroid-metabolizing capacity using androst-4-ene-3,17-dione as substrate. The active phorbol ester was seen to inhibit steroid metabolism markedly after 1 h whereas the inactive derivatives did not show this effect. The endogenous activator of protein kinase C (diacylglycerol) was also seen to inhibit steroid metabolism in a manner similar to the 4β-phorbol ester. Hepatic steroid metabolism is, thus, inhibited by activation of protein kinase C and this may be one of the mechanisms by which the regulatory hormones (e.g. growth hormone) affect steroid metabolism in the liver. J. Endocr. (1988) 118, 19–23


1997 ◽  
Vol 17 (6) ◽  
pp. 3418-3428 ◽  
Author(s):  
Z Lu ◽  
A Hornia ◽  
Y W Jiang ◽  
Q Zang ◽  
S Ohno ◽  
...  

Tumor-promoting phorbol esters activate, but then deplete cells of, protein kinase C (PKC) with prolonged treatment. It is not known whether phorbol ester-induced tumor promotion is due to activation or depletion of PKC. In rat fibroblasts overexpressing the c-Src proto-oncogene, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent growth and other transformation-related phenotypes. The appearance of transformed phenotypes induced by TPA in these cells correlated not with activation but rather with depletion of expressed PKC isoforms. Consistent with this observation, PKC inhibitors also induced transformed phenotypes in c-Src-overexpressing cells. Bryostatin 1, which inhibited the TPA-induced down-regulation of the PKCdelta isoform specifically, blocked the tumor-promoting effects of TPA, implicating PKCdelta as the target of the tumor-promoting phorbol esters. Consistent with this hypothesis, expression of a dominant negative PKCdelta mutant in cells expressing c-Src caused transformation of these cells, and rottlerin, a protein kinase inhibitor with specificity for PKCdelta, like TPA, caused transformation of c-Src-overexpressing cells. These data suggest that the tumor-promoting effect of phorbol esters is due to depletion of PKCdelta, which has an apparent tumor suppressor function.


2000 ◽  
Vol 78 (6) ◽  
pp. 715-723 ◽  
Author(s):  
John P Williams ◽  
Margaret A McKenna ◽  
Allyn M Thames III ◽  
Jay M McDonald

Tamoxifen inhibits bone resorption by disrupting calmodulin-dependent processes. Since tamoxifen inhibits protein kinase C in other cells, we compared the effects of tamoxifen and the phorbol ester, phorbol myristate acetate, on osteoclast activity. Phorbol esters stimulate bone resorption and calmodulin levels four-fold (k0.5 = 0.1–0.3 µM). In contrast, tamoxifen inhibited osteoclast activity ~60% with an IC50 of 1.5 µM, had no apparent effect on protein kinase C activity in whole-cell lysates, and reduced protein kinase Cα recovered by immunoprecipitation 75%. Phorbol esters stimulated resorption in a time-dependent manner that was closely correlated with a similar-fold increase in calmodulin. Protein kinase Cα, β, δ, ε, and ζ were all down-regulated in response to phorbol ester treatment. Tamoxifen and trifluoperazine inhibited PMA-dependent increases in bone resorption and calmodulin by 85 ± 10%. Down-regulation of protein kinase C isoforms by phorbol esters suggests that the observed increases in bone resorption and calmodulin levels are most likely due to a mechanism independent of protein kinase C and dependent on calmodulin. In conclusion, the data suggest that protein kinase C negatively regulates calmodulin expression and support the hypothesis that the effects of both phorbol esters and tamoxifen on osteoclast activity is mediated by calmodulin.Key words: osteoclast, calmodulin, tamoxifen, osteoporosis, protein kinase C.


1989 ◽  
Vol 258 (1) ◽  
pp. 177-185 ◽  
Author(s):  
D M Blakeley ◽  
A N Corps ◽  
K D Brown

Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.


1996 ◽  
Vol 271 (2) ◽  
pp. F469-F475 ◽  
Author(s):  
M. Takano ◽  
J. Nagai ◽  
M. Yasuhara ◽  
K. Inui

We studied the effect of phorbol 12-myristate 13-acetate (PMA), a phorbol ester which activates protein kinase C, on p-aminohippurate (PAH) transport in OK cells. PMA (10(-7) M) almost completely inhibited the transcellular transport of PAH across OK cell monolayers from the basal to the apical side, as well as the accumulation of PAH in the cells. The uptake of PAH across the basolateral membrane of OK cells was inhibited by PMA in a time-and dose-dependent fashion. Exposing the cells with other protein kinase C activators such as active phorbol esters and diacylglycerols also resulted in a significant inhibition of basolateral PAH uptake, but the inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate, had no effect. The inhibition of basolateral PAH uptake by PMA was blocked by staurosporine, an inhibitor of protein kinase C. Cycloheximide, actinomycin D, colchicine, and cytochalasin D did not affect the inhibitory effect of PMA on basolateral PAH uptake. These results suggested that the PAH transport system in OK cells is under the regulatory control of protein kinase C.


1987 ◽  
Vol 253 (1) ◽  
pp. H205-H209 ◽  
Author(s):  
G. F. Leatherman ◽  
D. Kim ◽  
T. W. Smith

Phorbol esters are potent tumor promoters that have been widely used in studies of transmembrane signaling because of their ability to activate protein kinase C. To study the effect of phorbol esters (and indirectly, the role of protein kinase C) on cardiac muscle contractility, we examined the effects of phorbol myristate acetate (PMA) on contractile state, transmembrane 45Ca fluxes, and cytosolic free Ca concentration ([Ca]i) using spontaneously contracting cultured chick ventricular cells. PMA produced a concentration- and time-dependent decrease in the amplitude of cell motion [half maximum inhibitory concentration (IC50) = 130 nM] with maximal effect (54 +/- 5% of control) observed at 1 microM. PMA (1 microM) reduced 45Ca uptake rate by 16 +/- 4% (P less than 0.05) and the size of the rapidly exchangeable Ca pool by 11 +/- 2% (P less than 0.05) but did not alter the 45Ca efflux rate. In fura-2-loaded cells, PMA produced a decrease in [Ca]i from 96 +/- 7 to 72 +/- 5 nM (mean +/- SE; P less than 0.05) with a time course similar to that of alteration in contractile amplitude. PMA had no effect on cellular Na content. Phorbol didecanoate (1 microM), a phorbol diester that does not activate protein kinase C, produced no significant changes in contractile amplitude, 45Ca fluxes, or [Ca]i. These results indicate that PMA influences transsarcolemmal Ca uptake, and thus the excitation-contraction process, and suggest that protein kinase C may modulate myocardial Ca homeostasis and contractile state.


Sign in / Sign up

Export Citation Format

Share Document