scholarly journals Tumor promotion by depleting cells of protein kinase C delta.

1997 ◽  
Vol 17 (6) ◽  
pp. 3418-3428 ◽  
Author(s):  
Z Lu ◽  
A Hornia ◽  
Y W Jiang ◽  
Q Zang ◽  
S Ohno ◽  
...  

Tumor-promoting phorbol esters activate, but then deplete cells of, protein kinase C (PKC) with prolonged treatment. It is not known whether phorbol ester-induced tumor promotion is due to activation or depletion of PKC. In rat fibroblasts overexpressing the c-Src proto-oncogene, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent growth and other transformation-related phenotypes. The appearance of transformed phenotypes induced by TPA in these cells correlated not with activation but rather with depletion of expressed PKC isoforms. Consistent with this observation, PKC inhibitors also induced transformed phenotypes in c-Src-overexpressing cells. Bryostatin 1, which inhibited the TPA-induced down-regulation of the PKCdelta isoform specifically, blocked the tumor-promoting effects of TPA, implicating PKCdelta as the target of the tumor-promoting phorbol esters. Consistent with this hypothesis, expression of a dominant negative PKCdelta mutant in cells expressing c-Src caused transformation of these cells, and rottlerin, a protein kinase inhibitor with specificity for PKCdelta, like TPA, caused transformation of c-Src-overexpressing cells. These data suggest that the tumor-promoting effect of phorbol esters is due to depletion of PKCdelta, which has an apparent tumor suppressor function.

1992 ◽  
Vol 3 (9) ◽  
pp. 1049-1056 ◽  
Author(s):  
H Eldar ◽  
E Livneh

Cell lines stably overexpressing protein kinase C (PKC)-alpha were previously described by us. These cell lines were generated by the introduction of the full length cDNA coding for PKC-alpha into Swiss/3T3 cells. Here we show that activation of PKC-alpha by phorbol-esters induced in these cells specific phosphorylation of two cellular proteins p90 and p52. Phosphorylation of p80 (MARCKS protein), previously identified as a substrate for PKC, was also enhanced. Phosphorylated p90 and p52 proteins were associated with particulate membrane-enriched fractions and were extractable with the use of nonionic detergents. Time course analysis of phorbol-ester induced phosphorylation of p90 and p52 revealed maximal stimulation of phosphorylation after 15-30 min. Phosphamino acid analysis showed that phosphorylation of p90 and p52 occurred mainly on serine residues. Phosphorylation of p52 was also on threonine residues. Whereas, phorbol ester activation induced phosphorylation of both p90 and p52, the mitogens platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) enhanced phosphorylation of p90, but not p52. Thus, our studies showed the involvement of PKC-alpha in the regulation of p90 and p52 phosphorylation and provided direct evidence for the role of PKC-alpha in cellular signaling by PDGF and FGF. Moreover, the fact that phosphorylation of p52 was specific to phorbol ester activation may suggest its involvement in tumor promotion. Characterization of p90 and p52 will enable us to reveal the phosphorylation cascade activated downstream to PKC-alpha and to determine their role in mitogenic signaling and tumor promotion.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 208-213 ◽  
Author(s):  
RM Stone ◽  
E Sariban ◽  
GR Pettit ◽  
DW Kufe

Phorbol esters induce the human HL-60 promyelocytic cell line to differentiate along a monocytic pathway. This induction of differentiation may involve phorbol ester-induced activation of the phospholipid- and calcium-dependent protein kinase C. Bryostatin 1, a macrocyclic lactone, has been shown to compete with phorbol esters for binding to protein kinase C. We have confirmed that bryostatin 1 translocates activity of protein kinase C from the cytosolic to membrane fractions of HL-60 cells. The present results also demonstrate that bryostatin 1 (10 nmol/L) induces monocytic differentiation of HL- 60 cells as determined by adherence, growth inhibition, appearance of monocyte cell surface antigens, and alpha-naphthyl acetate esterase staining. Furthermore, bryostatin 1 (10 nmol/L) downregulated c-myc expression and induced c-fos, c-fms, and tumor necrosis factor transcripts. These changes in gene expression induced by bryostatin 1 are similar to those associated with phorbol ester-induced monocytic differentiation of HL-60 cells. In contrast, exposure to a higher concentration of bryostatin 1 (100 nmol/L) had less of an effect on growth inhibition of HL-60 cells and changes in gene expression. Moreover, 100 nmol/L bryostatin 1 antagonized the cytostatic effects and adherence induced by phorbol esters. Our results thus suggest that bryostatin 1 activates HL-60 cell protein kinase C and that this effect is associated with induction of monocytic differentiation.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 208-213 ◽  
Author(s):  
RM Stone ◽  
E Sariban ◽  
GR Pettit ◽  
DW Kufe

Abstract Phorbol esters induce the human HL-60 promyelocytic cell line to differentiate along a monocytic pathway. This induction of differentiation may involve phorbol ester-induced activation of the phospholipid- and calcium-dependent protein kinase C. Bryostatin 1, a macrocyclic lactone, has been shown to compete with phorbol esters for binding to protein kinase C. We have confirmed that bryostatin 1 translocates activity of protein kinase C from the cytosolic to membrane fractions of HL-60 cells. The present results also demonstrate that bryostatin 1 (10 nmol/L) induces monocytic differentiation of HL- 60 cells as determined by adherence, growth inhibition, appearance of monocyte cell surface antigens, and alpha-naphthyl acetate esterase staining. Furthermore, bryostatin 1 (10 nmol/L) downregulated c-myc expression and induced c-fos, c-fms, and tumor necrosis factor transcripts. These changes in gene expression induced by bryostatin 1 are similar to those associated with phorbol ester-induced monocytic differentiation of HL-60 cells. In contrast, exposure to a higher concentration of bryostatin 1 (100 nmol/L) had less of an effect on growth inhibition of HL-60 cells and changes in gene expression. Moreover, 100 nmol/L bryostatin 1 antagonized the cytostatic effects and adherence induced by phorbol esters. Our results thus suggest that bryostatin 1 activates HL-60 cell protein kinase C and that this effect is associated with induction of monocytic differentiation.


1987 ◽  
Vol 8 (9) ◽  
pp. 1343-1346 ◽  
Author(s):  
Henry Hennings ◽  
Peter M. Blumberg ◽  
George R. Pettit ◽  
Cherry L. Herald ◽  
Robert Shores ◽  
...  

2000 ◽  
Vol 78 (6) ◽  
pp. 715-723 ◽  
Author(s):  
John P Williams ◽  
Margaret A McKenna ◽  
Allyn M Thames III ◽  
Jay M McDonald

Tamoxifen inhibits bone resorption by disrupting calmodulin-dependent processes. Since tamoxifen inhibits protein kinase C in other cells, we compared the effects of tamoxifen and the phorbol ester, phorbol myristate acetate, on osteoclast activity. Phorbol esters stimulate bone resorption and calmodulin levels four-fold (k0.5 = 0.1–0.3 µM). In contrast, tamoxifen inhibited osteoclast activity ~60% with an IC50 of 1.5 µM, had no apparent effect on protein kinase C activity in whole-cell lysates, and reduced protein kinase Cα recovered by immunoprecipitation 75%. Phorbol esters stimulated resorption in a time-dependent manner that was closely correlated with a similar-fold increase in calmodulin. Protein kinase Cα, β, δ, ε, and ζ were all down-regulated in response to phorbol ester treatment. Tamoxifen and trifluoperazine inhibited PMA-dependent increases in bone resorption and calmodulin by 85 ± 10%. Down-regulation of protein kinase C isoforms by phorbol esters suggests that the observed increases in bone resorption and calmodulin levels are most likely due to a mechanism independent of protein kinase C and dependent on calmodulin. In conclusion, the data suggest that protein kinase C negatively regulates calmodulin expression and support the hypothesis that the effects of both phorbol esters and tamoxifen on osteoclast activity is mediated by calmodulin.Key words: osteoclast, calmodulin, tamoxifen, osteoporosis, protein kinase C.


1996 ◽  
Vol 271 (2) ◽  
pp. F469-F475 ◽  
Author(s):  
M. Takano ◽  
J. Nagai ◽  
M. Yasuhara ◽  
K. Inui

We studied the effect of phorbol 12-myristate 13-acetate (PMA), a phorbol ester which activates protein kinase C, on p-aminohippurate (PAH) transport in OK cells. PMA (10(-7) M) almost completely inhibited the transcellular transport of PAH across OK cell monolayers from the basal to the apical side, as well as the accumulation of PAH in the cells. The uptake of PAH across the basolateral membrane of OK cells was inhibited by PMA in a time-and dose-dependent fashion. Exposing the cells with other protein kinase C activators such as active phorbol esters and diacylglycerols also resulted in a significant inhibition of basolateral PAH uptake, but the inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate, had no effect. The inhibition of basolateral PAH uptake by PMA was blocked by staurosporine, an inhibitor of protein kinase C. Cycloheximide, actinomycin D, colchicine, and cytochalasin D did not affect the inhibitory effect of PMA on basolateral PAH uptake. These results suggested that the PAH transport system in OK cells is under the regulatory control of protein kinase C.


1999 ◽  
Vol 342 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Michael L. FITZGERALD ◽  
Guy L. REED

In platelets and other secretory cells, protein kinase C (PKC) plays a role in exocytosis stimulated by physiological extracellular signals, although its linkage to the secretory machinery is poorly understood. We investigated whether Rab6, a GTP-binding protein that fractionates with platelet α-granules, may be involved in linking these processes. We found that Rab6 contains two PKC consensus phosphorylation sites that are evolutionarily conserved. In platelets metabolically labelled with [32P]Pi, Rab6 phosphorylation was induced by phorbol esters or by thrombin. This phosphorylation was blocked by a specific PKC inhibitor (Ro-31-8220), but not by a p38 mitogen-activated protein kinase inhibitor (PD-169316). Physiological stimulation of platelets caused a PKC-dependent translocation of Rab6 from platelet particulate fractions, nearly doubling the fraction of Rab6 in the cytosol. A human Rab6 isoform (Rab6C) that is preferentially expressed in human platelet RNA was cloned and its phosphorylation by PKC was characterized. Rab6C incorporated up to 2 mol of [32P]Pi per mol of active protein. Rab6C bound GDP and GTP with Kd values of 113±12 and 119±27 nM respectively, and hydrolysed GTP at a rate of 100±15 μmol of GTP/mol of Rab6C per min. PKC phosphorylation of Rab6C increased the affinity for GTP by 3-fold, although it had lesser effects on GDP (1.6-fold). Phosphorylation did not alter the GTPase activity. In summary, thrombin activation of platelets leads to PKC-dependent phosphorylation of Rab6 and a translocation of Rab6 to the cytosol. We suggest that PKC phosphorylation may be an important mechanism through which Rab functional interactions in vesicle trafficking and secretion can be altered in response to an external stimulus.


1985 ◽  
Vol 101 (1) ◽  
pp. 269-276 ◽  
Author(s):  
S Grinstein ◽  
S Cohen ◽  
J D Goetz ◽  
A Rothstein

The Na+/H+ antiport is stimulated by 12-O-tetradecanoylphorbol-13, acetate (TPA) and other phorbol esters in rat thymic lymphocytes. Mediation by protein kinase C is suggested by three findings: (a) 1-oleoyl-2-acetylglycerol also activated the antiport; (b) trifluoperazine, an inhibitor of protein kinase C, blocked the stimulation of Na+/H+ exchange; and (c) activation of countertransport was accompanied by increased phosphorylation of specific membrane proteins. The Na+/H+ antiport is also activated by osmotic cell shrinking. The time course, extent, and reversibility of the osmotically induced and phorbol ester-induced responses are similar. Moreover, the responses are not additive and they are equally susceptible to inhibition by trifluoperazine, N-ethylmaleimide, and ATP depletion. The extensive analogies between the TPA and osmotically induced effects suggested a common underlying mechanism, possibly activation of a protein kinase. It is conceivable that osmotic shrinkage initiates the following sequence of events: stimulation of protein kinase(s) followed by activation of the Na+/H+ antiport, resulting in cytoplasmic alkalinization. The Na+ taken up through the antiport, together with the HCO3- and Cl- accumulated in the cells as a result of the cytoplasmic alkalinization, would be followed by osmotically obliged water. This series of events could underlie the phenomenon of regulatory volume increase.


Sign in / Sign up

Export Citation Format

Share Document