scholarly journals Proteoglycans isolated from dissociative extracts of differently aged human articular cartilage: characterization of naturally occurring hyaluronan-binding fragments of aggrecan

1994 ◽  
Vol 304 (3) ◽  
pp. 887-894 ◽  
Author(s):  
V Vilim ◽  
A J Fosang

Proteoglycans extracted with 4 M guanidinium chloride from young (mean 20 years) or old (mean 79 years) macroscopically normal human articular cartilage were separated by density gradient centrifugation and Q-Sepharose chromatography and characterized by gradient gel SDS/PAGE and immunodetection before and after removal of glycosaminoglycan chains. The extracts contained two large populations of aggrecan, a population of small N-terminal aggrecan fragments, as well as decorin, biglycan and fibromodulin. The distribution of all these species in density gradient fractions has been determined. The large aggrecan populations comprised four different chondroitin sulphate-bearing core proteins while the population of smaller fragments comprised eight different components. The two smallest fragments (35 and 42 kDa), identified as the first globular domain of aggrecan (N-terminal) (G1) and containing no glycosaminoglycan, were detected only in extracts of old cartilage. A 55 and a 70 kDa fragment of G1 were present in both keratan sulphate-containing and non-keratan sulphate-containing forms. Four other fragments, each containing keratan sulphate epitopes, were identified and these contained either G1 epitopes (one 95 kDa species), or G1 and G2 epitopes (three species). These results have suggested that proteolytic processing at the N-terminus is more extensive than has previously been recognized and raises the possibility that more than one proteinase may be involved in aggrecan degradation in vivo. With the exception of the two smallest G1 fragments, the repertoire of proteoglycan fragments found in young and old human articular cartilage is essentially the same, although the relative abudnance of various species differed. The older tissue contains a larger proportion of C-terminally truncated aggrecan fragments and a significantly decreased content of decorin and biglycan.

1993 ◽  
Vol 293 (1) ◽  
pp. 165-172 ◽  
Author(s):  
V Vilím ◽  
A J Fosang

Approx. 10% of the total proteoglycan content of normal young human articular cartilage was extracted under associative conditions with Dulbecco's PBS. Proteoglycans isolated from the extract by Q-Sepharose chromatography were separated by gel chromatography and characterized by gradient gel SDS/PAGE and immunoblotting. Three species of small proteoglycans, two main populations of aggrecan and a population of its smaller fragments were identified. The major populations of aggrecan contained chondroitin sulphate chains, all or part of the N-terminal G1 and G2 domains and, therefore, intact keratan sulphate domains. The larger population was estimated by gradient SDS/PAGE to have a molecular mass of approx. 600 kDa or greater. The second population had an apparent molecular mass of approx. 300-600 kDa. Core proteins derived from these populations of proteoglycans separated on SDS/PAGE into several clusters of bands in the range from 120 to approx. 360 kDa. The extract further contained smaller fragments which lacked chondroitin sulphate but reacted with antibodies against keratan sulphate, and against epitopes present in the G2 domain of aggrecan. The presence of the G2 domain in a broad range of populations of decreasing size indicated extensive cleavage of the aggrecan core protein within its chondroitin sulphate domain. These findings suggest that fragmentation of aggrecan probably occurs in vivo in normal articular cartilage of young individuals. Associative extracts also contained decorin, biglycan and fibromodulin. These were resolved from aggrecan by gel chromatography and identified by immunodetection.


2004 ◽  
Vol 382 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Hidefumi OSHITA ◽  
John D. SANDY ◽  
Kiichi SUZUKI ◽  
Atsushi AKAIKE ◽  
Yun BAI ◽  
...  

Extracts of normal mature articular cartilage contain aggrecan molecules which bear the G1 domain (the N-terminal globular domain of aggrecan) and are C-terminally truncated by proteolysis at a number of sites. A proportion of these molecules are generated by an aggrecanase and/or matrix-metalloproteinase-mediated cleavage in the IGD (interglobular domain between the G1 and G2 domains of aggrecan). However, the proteinase(s) responsible for formation of the majority of the larger G1-G2 and glycosaminoglycan-bearing truncated species is (are) unknown. N-terminal sequencing of aggrecan core fragments generated by m-calpain digestion of bovine aggrecan has identified four novel cleavage sites: one within the CS (chondroitin sulphate)-1 domain (at one or more of the bonds Ser1229–Val1230, Ser1249–Val1250, Ser1287–Val1288, Gly1307–Val1308 and Ser1346–Val1347), two within the IGD (at bonds Ala474–Ala475 and Gly365–Gly366) and one within the KS (keratan sulphate) domain (at Ala719–Ala720). A new monoclonal antibody (SK-28) to the C-terminal neoepitope at M710VTQVGPGVA719 showed that aggrecan products generated by this cleavage are present in high abundance in mature bovine articular cartilage extracts. We conclude that m-calpain, or an unidentified proteinase with the capacity to cleave at the same site, is active during aggrecan biosynthesis/secretion by mature chondrocytes or in the matrix of mature bovine articular cartilage in vivo.


1985 ◽  
Vol 225 (1) ◽  
pp. 95-106 ◽  
Author(s):  
D Heinegård ◽  
J Wieslander ◽  
J Sheehan ◽  
M Paulsson ◽  
Y Sommarin

Intermediary gel immunoelectrophoresis was used to show that purified aggregating cartilage proteoglycans from 2-year-old steers contain two distinct populations of molecules and that only one of these is immunologically related to non-aggregating cartilage proteoglycans. The two types of aggregating proteoglycans were purified by density-gradient centrifugation in 3.5M-CsCl/4M-guanidinium chloride and separated by zonal rate centrifugation in sucrose gradients. The higher-buoyant-density faster-sedimenting proteoglycan represented 43% of the proteoglycans in the extract. It had a weight-average Mr of 3.5 × 10(6), did not contain a well-defined keratan sulphate-rich region, had a quantitatively dominant chondroitin sulphate-rich region and contained 5.9% protein and 23% hexosamine. The lower-buoyant-density, more slowly sedimenting, proteoglycan represented 15% of the proteoglycans in the extract. It had a weight-average Mr of 1.3 × 10(6), contained both the keratan sulphate-rich and the chondroitin sulphate-rich regions and contained 7.3% protein and 23% hexosamine. Each of the proteoglycan preparations showed only one band on agarose/polyacrylamide-gel electrophoresis. The larger proteoglycan had a lower mobility than the smaller. The distribution of chondroitin sulphate chains along the chondroitin sulphate-rich region was similar for the two types of proteoglycans. The somewhat larger chondroitin sulphate chains of the larger proteoglycan could not alone account for the larger size of the proteoglycan. Peptide patterns after trypsin digestion of the proteoglycans showed great similarities, although the presence of a few peptides not shared by both populations indicates that the core proteins are partially different.


1975 ◽  
Vol 149 (3) ◽  
pp. 657-668 ◽  
Author(s):  
E Baxter ◽  
H Muir

Proteoglycans extracted with 4M-guanidinium chloride from pig laryngeal cartilage and bovine nasal septum were purified by density-gradient centrifugation in CsCl under ‘associative’ followed by ‘dissociative’ conditions [Hascall & Sajdera (1969) J. Biol. Chem.244, 2384-2396]. Proteoglycans were then digested exhaustively with testicular hyaluronidase, which removed about 80% of the chondroitin sulphate. The hyaluronidase was purified until no proteolytic activity was detectable under the conditions used for digestion. The resulting ‘core’ proteins of both species were fractionated by a sequence of gel-chromatographic procedures which gave four major fractions of decreasing hydrodynamic size. Those that on electrophoresis penetrated 5.6% (w/v) polyacrylamide gels migrated as discrete bands whose mobility increased with decreasing hydrodynamic size. The unfractionated ‘core’ proteins had the same N-terminal amino acids as the intact proteoglycan, suggesting that no peptide bonds had been cleaved during hyaluronidase digestion. Alanine predominated as the N-terminal residue in all the fractions of both species. Fractions were analysed for amino acid, amino sugar, uronic acid and neutral sugar compositions. In pig ‘core’ proteins, the glutamic acid content increased significantly with hydrodynamic size, but in bovine ‘core’ proteins this trend was less marked. Significant differences in amino acid composition between fractions suggested that in each species there was more than one variety of proteoglycan. The molar proportions of xylose to serine destroyed on alkaline β-elimination were equivalent in most fractions, indicating that the serine residues destroyed were attached to the terminal xylose of chondroitin sulphate chains. The ratio of serine residues to threonine residues destroyed on β-elimination, was similar in all fractions of both species. Since the fractions of smallest hydrodynamic size contained less keratan sulphate than those of larger size, it implies that in the former the keratan sulphate chains were shorter than in the latter.


1996 ◽  
Vol 318 (3) ◽  
pp. 1051-1056 ◽  
Author(s):  
Dagmar-Christiane FISCHER ◽  
Hans-Dieter HAUBECK ◽  
Kirsten EICH ◽  
Susanne KOLBE-BUSCH ◽  
Georg STÖCKER ◽  
...  

Monoclonal antibodies (mAbs) were prepared against aggrecan which has been isolated from human articular cartilage and purified by several chromatographic steps. One of these mAbs, the aggrecan-specific mAb 3D12/H7, was selected for further characterization. The data presented indicate that this mAb recognizes a novel domain of keratan sulphate chains from aggrecan: (1) immunochemical staining of aggrecan is abolished by treatment with keratanase/keratanase II, but not with keratanase or chondroitin sulphate lyase AC/ABC; (2) after chemical deglycosylation of aggrecan no staining of the core-protein was observed; (3) different immunochemical reactivity was observed against keratan sulphates from articular cartilage, intervertebral disc and cornea for the mAbs 3D12/H7 and 5D4. For further characterization of the epitope, reduced and 3H-labelled keratan sulphate chains were prepared. In an IEF–gel-shift assay it was shown that the 3H-labelled oligosaccharides obtained after keratanase digestion of reduced and 3H-labelled keratan sulphate chains were recognized by the mAb 3D12/H7. Thus it can be concluded that the mAb 3D12/H7 recognizes an epitope in the linkage region present in, at least some, keratan sulphate chains of the large aggregating proteoglycan from human articular cartilage. Moreover, this domain seems to be expressed preferentially on those keratan sulphate chains which occur in the chondroitin sulphate-rich region of aggrecan, since the antibody does not recognize the keratan sulphate-rich region obtained after combined chondroitinase AC/ABC and trypsin digestion of aggrecan.


1993 ◽  
Vol 295 (2) ◽  
pp. 421-426 ◽  
Author(s):  
P J Roughley ◽  
R J White ◽  
M C Magny ◽  
J Liu ◽  
R H Pearce ◽  
...  

Polyclonal anti-peptide antibodies were raised to the C-terminal regions of human biglycan and decorin. These antibodies were used in immunoblotting to study structural variations with age in the proteoglycan core proteins present in extracts of human articular cartilage and intervertebral disc. Three forms of the biglycan core protein were identified. The largest form was detected only after chondroitinase treatment and represents the proteoglycan form of the molecule from which the glycosaminoglycan chains have been removed. However, chondroitinase treatment did not alter the electrophoretic mobility of the two smaller proteins, which appear to represent non-proteoglycan forms of the molecule, resulting either from a failure to substitute the intact proteoglycan core protein with glycosaminoglycan chains during its synthesis or from proteolytic processing of the intact proteoglycan causing removal of the N-terminal region bearing the glycosaminoglycan chains. The non-proteoglycan forms constituted a minor proportion of biglycan in the newborn, but were the major components in the adult. A similar trend was seen in both articular cartilage and intervertebral disc. In comparison, decorin appears to exist predominantly as a proteoglycan at all ages, with two core protein sizes being present after chondroitinase treatment. Non-proteoglycan forms were detected in the adult, but they were always a minor constituent.


1983 ◽  
Vol 215 (3) ◽  
pp. 705-708 ◽  
Author(s):  
M T Bayliss ◽  
G D Ridgway ◽  
S Y Ali

Pieces of adult human articular cartilage and chondrosarcoma were incubated in the presence of [35S]sulphate. After continuous or pulse-change incorporation of radioactivity, proteoglycans were extracted with 4.0 M-guanidinium chloride, purified by equilibrium density-gradient centrifugation and fractionated by gel chromatography. A comparison of the results suggests that the formation of stable aggregates occurs at a lower rate in articular cartilage than in chondrosarcoma.


1989 ◽  
Vol 259 (1) ◽  
pp. 21-25 ◽  
Author(s):  
M A Campbell ◽  
C J Handley ◽  
S E D'Souza

By using an e.l.i.s.a. method it was demonstrated that the majority of proteoglycans released into the medium of both control and retinoic acid-treated explant cultures of bovine articular cartilage did not contain a hyaluronate-binding region. This supports our previous findings [Campbell & Handley (1987) Arch. Biochem. Biophys. 258, 143-155] that proteoglycans released into the medium of both cultures were of smaller hydrodynamic size, more polydisperse and unable to form aggregates with hyaluronate. Analysis of 35S-labelled core proteins associated with proteoglycans released into the medium of both cultures by using SDS/polyacrylamide-gel electrophoresis and fluorography indicated the presence of a series of core-protein bands (Mr approx. 300,000, 230,000, 215,000, 200,000, 180,000, 140,000, 135,000, 105,000, 85,000 and 60,000) compared with three core proteins derived from the proteoglycans remaining in the matrix (Mr 300,000, 230,000 and 215,000). Further analysis of the core proteins released into the medium indicated that the larger core proteins associated with medium proteoglycans contain both chondroitin sulphate and keratan sulphate glycosaminoglycans whereas the smaller core proteins contain only chondroitin sulphate chains. These experiments provide definitive evidence that the loss of proteoglycans from the matrix involves proteolytic cleavage at various sites along the proteoglycan core protein.


1980 ◽  
Vol 185 (3) ◽  
pp. 705-713 ◽  
Author(s):  
D McNicol ◽  
P J Roughley

This study consists of (1) the extraction of proteoglycan from the human meniscus under dissociative conditions, (2) an investigation of the changes that occur in the abundance and structure of this proteoglycan with age and (3) a comparison of these findings with those for human articular-cartilage proteoglycan. Adult meniscus was found to possess proteoglycan molecules of similar size and glycosaminoglycan content to those present in cartilage, although tissue concentrations were considerably lower. In addition, age-related changes, with respect to the occurrence of keratan sulphate and the sulphation of chondroitin sulphate chains, were common to both tissues. The presence of aggregated proteoglycan was demonstrated, although specific interaction with hyaluronic acid was not conclusively shown biochemically. Differences were, however, noted in the structure of the proteoglycan between the two tissues: dermatan sulphate was found in the meniscus proteoglycan preparation and the core proteins exhibited some dissimilarities. A proteoglycan structure of this type would be compatible with its participation in meniscus elasticity, especially as the material is localized in a specific area.


1983 ◽  
Vol 209 (2) ◽  
pp. 387-400 ◽  
Author(s):  
M T Bayliss ◽  
M Venn ◽  
A Maroudas ◽  
S Y Ali

Full-depth plugs of adult human articular cartilage were cut into serial slices from the articular surface and analysed for their glycosaminoglycan content. The amount of chondroitin sulphate was highest in the mid-zone, whereas keratan sulphate increased progressively through the depth. Proteoglycans were isolated from each layer by extraction with 4M-guanidinium chloride followed by centrifugation in 0.4M-guanidinium chloride/CsCl at a starting density of 1.5 g/ml. The efficiency with which proteoglycans were extracted depended on slice thickness, and extraction was complete only when cartilage from each zone was sectioned at 20 microns or less. When thick sections (250 microns) were extracted, hyaluronic acid was retained in the tissue. Most of the proteoglycans, extracted from each layer under optimum conditions, could interact with hyaluronic acid to form aggregates, although the extent of aggregation was less in the deeper layers. Two pools of proteoglycan were identified in all layers by gel chromatography (Kav. 0.33 and 0.58). The smaller of these was rich in keratan sulphate and protein, and gradually increased in proportion through the cartilage depth. Chondroitin sulphate chain size was constant in all regions. The changes in composition and structure observed were consistent with the current model for hyaline-cartilage proteoglycans and were similar to those observed with increasing age in human articular cartilage.


Sign in / Sign up

Export Citation Format

Share Document