scholarly journals Characterization of proteoglycans isolated from associative extracts of human articular cartilage

1993 ◽  
Vol 293 (1) ◽  
pp. 165-172 ◽  
Author(s):  
V Vilím ◽  
A J Fosang

Approx. 10% of the total proteoglycan content of normal young human articular cartilage was extracted under associative conditions with Dulbecco's PBS. Proteoglycans isolated from the extract by Q-Sepharose chromatography were separated by gel chromatography and characterized by gradient gel SDS/PAGE and immunoblotting. Three species of small proteoglycans, two main populations of aggrecan and a population of its smaller fragments were identified. The major populations of aggrecan contained chondroitin sulphate chains, all or part of the N-terminal G1 and G2 domains and, therefore, intact keratan sulphate domains. The larger population was estimated by gradient SDS/PAGE to have a molecular mass of approx. 600 kDa or greater. The second population had an apparent molecular mass of approx. 300-600 kDa. Core proteins derived from these populations of proteoglycans separated on SDS/PAGE into several clusters of bands in the range from 120 to approx. 360 kDa. The extract further contained smaller fragments which lacked chondroitin sulphate but reacted with antibodies against keratan sulphate, and against epitopes present in the G2 domain of aggrecan. The presence of the G2 domain in a broad range of populations of decreasing size indicated extensive cleavage of the aggrecan core protein within its chondroitin sulphate domain. These findings suggest that fragmentation of aggrecan probably occurs in vivo in normal articular cartilage of young individuals. Associative extracts also contained decorin, biglycan and fibromodulin. These were resolved from aggrecan by gel chromatography and identified by immunodetection.

1994 ◽  
Vol 304 (3) ◽  
pp. 887-894 ◽  
Author(s):  
V Vilim ◽  
A J Fosang

Proteoglycans extracted with 4 M guanidinium chloride from young (mean 20 years) or old (mean 79 years) macroscopically normal human articular cartilage were separated by density gradient centrifugation and Q-Sepharose chromatography and characterized by gradient gel SDS/PAGE and immunodetection before and after removal of glycosaminoglycan chains. The extracts contained two large populations of aggrecan, a population of small N-terminal aggrecan fragments, as well as decorin, biglycan and fibromodulin. The distribution of all these species in density gradient fractions has been determined. The large aggrecan populations comprised four different chondroitin sulphate-bearing core proteins while the population of smaller fragments comprised eight different components. The two smallest fragments (35 and 42 kDa), identified as the first globular domain of aggrecan (N-terminal) (G1) and containing no glycosaminoglycan, were detected only in extracts of old cartilage. A 55 and a 70 kDa fragment of G1 were present in both keratan sulphate-containing and non-keratan sulphate-containing forms. Four other fragments, each containing keratan sulphate epitopes, were identified and these contained either G1 epitopes (one 95 kDa species), or G1 and G2 epitopes (three species). These results have suggested that proteolytic processing at the N-terminus is more extensive than has previously been recognized and raises the possibility that more than one proteinase may be involved in aggrecan degradation in vivo. With the exception of the two smallest G1 fragments, the repertoire of proteoglycan fragments found in young and old human articular cartilage is essentially the same, although the relative abudnance of various species differed. The older tissue contains a larger proportion of C-terminally truncated aggrecan fragments and a significantly decreased content of decorin and biglycan.


1996 ◽  
Vol 318 (3) ◽  
pp. 1051-1056 ◽  
Author(s):  
Dagmar-Christiane FISCHER ◽  
Hans-Dieter HAUBECK ◽  
Kirsten EICH ◽  
Susanne KOLBE-BUSCH ◽  
Georg STÖCKER ◽  
...  

Monoclonal antibodies (mAbs) were prepared against aggrecan which has been isolated from human articular cartilage and purified by several chromatographic steps. One of these mAbs, the aggrecan-specific mAb 3D12/H7, was selected for further characterization. The data presented indicate that this mAb recognizes a novel domain of keratan sulphate chains from aggrecan: (1) immunochemical staining of aggrecan is abolished by treatment with keratanase/keratanase II, but not with keratanase or chondroitin sulphate lyase AC/ABC; (2) after chemical deglycosylation of aggrecan no staining of the core-protein was observed; (3) different immunochemical reactivity was observed against keratan sulphates from articular cartilage, intervertebral disc and cornea for the mAbs 3D12/H7 and 5D4. For further characterization of the epitope, reduced and 3H-labelled keratan sulphate chains were prepared. In an IEF–gel-shift assay it was shown that the 3H-labelled oligosaccharides obtained after keratanase digestion of reduced and 3H-labelled keratan sulphate chains were recognized by the mAb 3D12/H7. Thus it can be concluded that the mAb 3D12/H7 recognizes an epitope in the linkage region present in, at least some, keratan sulphate chains of the large aggregating proteoglycan from human articular cartilage. Moreover, this domain seems to be expressed preferentially on those keratan sulphate chains which occur in the chondroitin sulphate-rich region of aggrecan, since the antibody does not recognize the keratan sulphate-rich region obtained after combined chondroitinase AC/ABC and trypsin digestion of aggrecan.


1989 ◽  
Vol 259 (1) ◽  
pp. 21-25 ◽  
Author(s):  
M A Campbell ◽  
C J Handley ◽  
S E D'Souza

By using an e.l.i.s.a. method it was demonstrated that the majority of proteoglycans released into the medium of both control and retinoic acid-treated explant cultures of bovine articular cartilage did not contain a hyaluronate-binding region. This supports our previous findings [Campbell & Handley (1987) Arch. Biochem. Biophys. 258, 143-155] that proteoglycans released into the medium of both cultures were of smaller hydrodynamic size, more polydisperse and unable to form aggregates with hyaluronate. Analysis of 35S-labelled core proteins associated with proteoglycans released into the medium of both cultures by using SDS/polyacrylamide-gel electrophoresis and fluorography indicated the presence of a series of core-protein bands (Mr approx. 300,000, 230,000, 215,000, 200,000, 180,000, 140,000, 135,000, 105,000, 85,000 and 60,000) compared with three core proteins derived from the proteoglycans remaining in the matrix (Mr 300,000, 230,000 and 215,000). Further analysis of the core proteins released into the medium indicated that the larger core proteins associated with medium proteoglycans contain both chondroitin sulphate and keratan sulphate glycosaminoglycans whereas the smaller core proteins contain only chondroitin sulphate chains. These experiments provide definitive evidence that the loss of proteoglycans from the matrix involves proteolytic cleavage at various sites along the proteoglycan core protein.


1983 ◽  
Vol 209 (2) ◽  
pp. 387-400 ◽  
Author(s):  
M T Bayliss ◽  
M Venn ◽  
A Maroudas ◽  
S Y Ali

Full-depth plugs of adult human articular cartilage were cut into serial slices from the articular surface and analysed for their glycosaminoglycan content. The amount of chondroitin sulphate was highest in the mid-zone, whereas keratan sulphate increased progressively through the depth. Proteoglycans were isolated from each layer by extraction with 4M-guanidinium chloride followed by centrifugation in 0.4M-guanidinium chloride/CsCl at a starting density of 1.5 g/ml. The efficiency with which proteoglycans were extracted depended on slice thickness, and extraction was complete only when cartilage from each zone was sectioned at 20 microns or less. When thick sections (250 microns) were extracted, hyaluronic acid was retained in the tissue. Most of the proteoglycans, extracted from each layer under optimum conditions, could interact with hyaluronic acid to form aggregates, although the extent of aggregation was less in the deeper layers. Two pools of proteoglycan were identified in all layers by gel chromatography (Kav. 0.33 and 0.58). The smaller of these was rich in keratan sulphate and protein, and gradually increased in proportion through the cartilage depth. Chondroitin sulphate chain size was constant in all regions. The changes in composition and structure observed were consistent with the current model for hyaline-cartilage proteoglycans and were similar to those observed with increasing age in human articular cartilage.


1989 ◽  
Vol 262 (3) ◽  
pp. 823-827 ◽  
Author(s):  
P J Roughley ◽  
R J White

Dermatan sulphate proteoglycans were purified from juvenile human articular cartilage, with a yield of about 2 mg/g wet wt. of cartilage. Both dermatan sulphate proteoglycan I (DS-PGI) and dermatan sulphate proteoglycan II (DS-PGII) were identified and the former was present in greater abundance. The two proteoglycans could not be resolved by agarose/polyacrylamide-gel electrophoresis, but could be resolved by SDS/polyacrylamide-gel electrophoresis, which indicated average Mr values of 200,000 and 98,000 for DS-PGI and DS-PGII respectively. After digestion with chondroitin ABC lyase the Mr values of the core proteins were 44,000 for DS-PGI and 43,000 and 47,000 for DS-PGII, with the smaller core protein being predominant in DS-PGII. Sequence analysis of the N-terminal 20 amino acid residues reveals the presence of a single site for the potential substitution of dermatan sulphate at residue 4 of DS-PGII and two such sites at residues 5 and 10 for DS-PGI.


1985 ◽  
Vol 232 (1) ◽  
pp. 161-168 ◽  
Author(s):  
S Johansson ◽  
K Hedman ◽  
L Kjellén ◽  
J Christner ◽  
A Vaheri ◽  
...  

Subconfluent cultures of human embryonic skin fibroblasts were labelled with [35S]sulphate for 3 days, after which cell-free extracellular matrix was isolated. A chondroitin sulphate proteoglycan (CSPG) and a heparan sulphate proteoglycan (HSPG) were purified from the matrix. Chromatography on Sepharose CL-2B gave peak Kav. values of 0.35 and 0.38 respectively for the CSPG and the HSPG. The polysaccharide chains released from the two PGs were of similar size (Kav. 0.50 on Sepharose CL-4B). Approx. 50% of the CSPG showed affinity for hyaluronic acid (HA). However, it differed immunologically from the HA-aggregating CSPG of human articular cartilage, and had a larger core protein (apparent molecular mass 290 kDa) than had the cartilage PG. Neither metabolically [35S]sulphate-labelled PGs, isolated from the medium of fibroblast cultures, nor chemically 3H-labelled polysaccharides (HA, CS, HS and heparin) were incorporated into the extracellular matrix when added to unlabelled cell cultures. These results indicate that the matrix PGs are not derived from the PGs present in the medium and that an interation between polysaccharide chains and matrix components is not sufficient for incorporation of PGs into the matrix. Incubation of cell-free 35S-labelled matrix with unlabelled polysaccharides did not lead to the release of any 35S-labelled material, supporting this conclusion. Furthermore, so-called ‘link proteins’ were not present in the fibroblast cultures, indicating that the CSPGs were anchored in the matrix in a manner different from the link-stabilized association of CSPG with HA in chondrocyte matrix. The identification of a proteinase, secreted by fibroblasts in culture, that after activation with heparin has the ability to release 35S-labelled PGs from the matrix may also indicate that the core proteins are important for the association of the PGs to the matrix.


1990 ◽  
Vol 272 (1) ◽  
pp. 193-199 ◽  
Author(s):  
M Pacifici

The mechanisms regulating the secretion of proteoglycans and collagens in chondrocytes, in particular those operating at the level of the rough endoplasmic reticulum (RER), are largely unknown. To examine these mechanisms, I studied the effects of acute ascorbate treatment on the secretion of two collagen types (types II and IX) and two proteoglycan types (PG-H and PG-Lb, the major keratan sulphate/chondroitin sulphate proteoglycan and the minor chondroitin sulphate proteoglycan respectively in cartilage) in scorbutic cultures of chick vertebral chondrocytes. I found that the scorbutic chondrocytes synthesized underhydroxylated precursors of types II and IX collagen that were secreted very slowly and accumulated in the RER. When the cultures were treated acutely with ascorbate, both macromolecules underwent hydroxylation within 1-1.5 h of treatment, and began to be secreted at normal high rates starting at about 2 h. Proteoglycan synthesis and secretion, however, remained largely unaffected by ascorbate treatment. Both the half-time of newly synthesized PG-H core protein in the RER and its conversion into completed proteoglycan were unchanged during treatment. Similarly, the overall rates of synthesis and secretion of both PG-H and PG-Lb remained at control levels during treatment. The data indicate that secretion of types II and IX collagen is regulated independently of secretion of PG-H and PG-Lb. This may be mediated by the ability of the RER of the chondrocyte to discriminate between procollagens and proteoglycan core proteins.


1991 ◽  
Vol 279 (3) ◽  
pp. 733-739 ◽  
Author(s):  
C Hughes ◽  
G Murphy ◽  
T E Hardingham

The action of purified rabbit bone stromelysin was investigated on proteoglycan aggregates from pig laryngeal cartilage. The enzyme caused a rapid fall in viscosity of proteoglycan aggregate solution (6 mg/ml), and the products of a partial digest (60% loss of relative viscosity) and a complete digest (95% loss of relative viscosity) were characterized. Analysis by gel chromatography on Sepharose 2B under associative conditions showed that 95% of the glycosaminoglycans in the complete digest were in small-sized fragments, whereas most of the hyaluronan-binding G1 domain and link protein remained intact and bound to hyaluronan. In contrast, there was extensive digestion of the G2 domain which resulted in 76% loss in its detection by immunoassay. Analysis of the partial digest also showed considerable loss (40%) of detection of the G2 domain, but the glycosaminoglycan-rich fragments were much larger than in the complete digest. There was also much less cleavage to create small fragments containing the G1 domain. This was evident on SDS/PAGE analysis where a 58 kDa G1 domain fragment was abundant in the complete digest, but was only present in small amounts in the partial digest. There was also only very limited conversion of link protein from a 44 kDa form to a 40 kDa form. The digestion of proteoglycan aggregate (6 mg/ml) by stromelysin was unaffected by the addition of a high concentration of extra chondroitin sulphate chains (14 mg/ml), and the digestion of proteoglycan monomer showed that the G1 domain was resistant to stromelysin digestion even when not bound to hyaluronan and link protein. The results show that stromelysin degrades the proteoglycan protein core with major cleavages close to, but not within, the G1 domain, and extensive cleavage in other regions. Experiments with purified collagenase, a metalloproteinase structurally related to stromelysin, showed that it too cleaved proteoglycan at several sites within the glycosaminoglycan-rich region of the core protein. Metalloproteinase attack on proteoglycan thus not only occurs with stromelysin but also with collagenase.


1993 ◽  
Vol 295 (2) ◽  
pp. 421-426 ◽  
Author(s):  
P J Roughley ◽  
R J White ◽  
M C Magny ◽  
J Liu ◽  
R H Pearce ◽  
...  

Polyclonal anti-peptide antibodies were raised to the C-terminal regions of human biglycan and decorin. These antibodies were used in immunoblotting to study structural variations with age in the proteoglycan core proteins present in extracts of human articular cartilage and intervertebral disc. Three forms of the biglycan core protein were identified. The largest form was detected only after chondroitinase treatment and represents the proteoglycan form of the molecule from which the glycosaminoglycan chains have been removed. However, chondroitinase treatment did not alter the electrophoretic mobility of the two smaller proteins, which appear to represent non-proteoglycan forms of the molecule, resulting either from a failure to substitute the intact proteoglycan core protein with glycosaminoglycan chains during its synthesis or from proteolytic processing of the intact proteoglycan causing removal of the N-terminal region bearing the glycosaminoglycan chains. The non-proteoglycan forms constituted a minor proportion of biglycan in the newborn, but were the major components in the adult. A similar trend was seen in both articular cartilage and intervertebral disc. In comparison, decorin appears to exist predominantly as a proteoglycan at all ages, with two core protein sizes being present after chondroitinase treatment. Non-proteoglycan forms were detected in the adult, but they were always a minor constituent.


Sign in / Sign up

Export Citation Format

Share Document